This will count as one of your downloads.
You will have access to both the presentation and article (if available).
PEALD AlF3 films were deposited using trimethylaluminum and SF6 plasma precursors in a modified Veeco Fiji G2 reactor. ALD growth windows (the range of process parameters resulting in ideal growth) were established using an in situ ellipsometer to monitor the fluoride growth rate directly on Al substrates and supplemented with post-deposition x-ray photoelectron spectroscopy to elucidate process-structure property relationships. Optimal AlF3 films had a growth rate of 0.75-0.8Å/cycle, F/Al ratio of ≈3, < 2 at% O, indicating that PEALD is a beneficial process technique towards achieving optical coatings on a variety of potential mirror materials. The influence of PEALD parameters on the FUV optical performance of Al mirrors overcoated with PEALD-AlF3 will be also discussed.
Efficient mirrors with high reflectivity over the ultra-violet, optical, and infra-red (UVOIR) spectral range are essential components in future space-based observatories. Aluminum mirrors with fluoride-based protective layers are commonly the baseline UV coating technology; these mirrors have been proven to be stable, reliable, and with long flight heritage. However, despite their optical performance to date, their reflectivity is still insufficient for future large telescope instrumentation in which several reflections are required.
Recently, a novel passivation procedure based on the exposure of bare Al to a fluorine containing electron beam generated plasma has been presented [1,2]. This research is framed in a collaboration between Goddard Space Flight Center (GSFC) and the U.S. Naval Research Laboratory (NRL), with plasma treatment carried out in NRL’s large area plasma processing system (LAPPS) using aluminum coated glass samples produced at GSFC coating facilities. The passivation of the bare Al is accomplished by using an electron-beam generated plasma produced in a fluorine-containing background to simultaneously remove the native oxide layer while promoting the formation of an AlF3 passivation layer with tunable thickness. Importantly, this new treatment uses benign precursors (SF6) and is performed at room temperature. In this work, details of the plasma process and in situ surface monitoring with spectroscopic ellipsometry are discussed. This novel procedure has demonstrated improved Al mirrors with state of the art far-ultraviolet (FUV) (λ = 90-200 nm) reflectivity (e.g. R=91% at 121.6 nm) paired with an excellent thickness control of the Al protective layer.High performance polarizers can be obtained with optimized coatings. Interference coatings can tune polarizers at the spectral line(s) of interest for solar and stellar physics. Polarizing beamsplitters consist in polarizers that separate one polarization component by reflection and the other by transmission, which enables observing the two polarization components simultaneously with a single polarizer. They involve the benefit of a higher efficiency in collection of polarization data due to the use of a single polarizer for the two polarization components and they may also facilitate a simplified design for a space polarimeter. We present results on polarizing beamsplitters tuned either at 121.6 nm or at the pair of 155 and 280 nm spectral lines.
GOLD’s research is devoted to developing novel coatings with enhanced performance for space optics. Several deposition systems are available for the deposition of multilayer coatings. A deposition system was developed to deposit FUV coatings to satisfy space requirements. It consists of a 75-cm-diameter deposition chamber pumped with a cryo-pump and placed in an ISO-6 clean room. This chamber is available for deposition by evaporation of top-requirement coatings such as Al/ MgF2 mirrors or (Al/MgF2)n multilayer coatings for transmittance filters. A plan to add an Ion-Beam-Sputtering system in this chamber is under way.
In this and other chambers at GOLD the following FUV coatings can be prepared:
Transmittance filters based on (Al/MgF2)n multilayer coatings. These filters can be designed to have a peak at the FUV spectral line or band of interest and a high peak-to-visible transmittance ratio. Filters can be designed with a peak transmittance at a wavelength as short as 120 nm and with a transmittance in the visible smaller than 10-5.
Narrowband reflective coatings peaked close to H Lyman β (102.6 nm) with a reflectance at H Lyman α (121.6 nm) two orders of magnitude below the one at 102.6 nm. Other potential spectral lines at which these coatings could be peaked are the OVI doublet (103.2, 103.8 nm).
Narrowband reflective mirrors based on (MgF2/LaF3)n multilayers peaked at a wavelength as short as 120 nm. Target wavelengths include lines of high interest for space observations, such as H Lyman α (121.6 nm), OI (130.4 and 135.6 nm), CIV (154.8, 155.1 nm), among others.
Coating-based linear polarizers tuned at H Lyman α (121.6 nm) both based on reflectance or on transmittance. Reflective polarizers present a high efficiency. Transmissive polarizers have a more modest peak performance compared to reflective polarizers; however, they involve spectral filtering properties to reject the long FUV and even more the near UV to the IR, which turn them competitive compared to reflective polarizers.
In this communication we present a summary of our research on the above FUV coatings developed at GOLD.
The optical constants of thin films of MgF2, LaF3, and CeF3 have been determined in the spectral range of 30-950 nm. Among them, MgF2 is a low refractive index material whereas LaF3 and CeF3 have a relatively high refractive index at short wavelengths; this contrast is adequate to make multilayer coatings. Fluoride thin films were deposited by evaporation onto substrates at 523 K. Optical constants were calculated using sets of transmittance, reflectance, and ellipsometry measurements. The measured optical constants were extended to a broader range with literature data and extrapolations in order to obtain self-consistent sets of data using the Kramers-Krönig analysis. The optical constant data here presented extend the available literature data both shortwards and longwards, particularly for CeF3 where few data had been reported.
The obtained optical constants of MgF2 and LaF3 were used to design narrowband reflective multilayer coatings for the short FUV. Multilayer coatings centered at 121 and at 130 nm with remarkable reflectance were prepared. The coatings kept a valuable reflectance after ageing in a desiccator for 12 months.
View contact details
No SPIE Account? Create one