The model-based image reconstruction techniques for photoacoustic (PA) tomography require an explicit regularization. An error estimate (η2) minimization-based approach was proposed and developed for the determination of a regularization parameter for PA imaging. The regularization was used within Lanczos bidiagonalization framework, which provides the advantage of dimensionality reduction for a large system of equations. It was shown that the proposed method is computationally faster than the state-of-the-art techniques and provides similar performance in terms of quantitative accuracy in reconstructed images. It was also shown that the error estimate (η2) can also be utilized in determining a suitable regularization parameter for other popular techniques such as Tikhonov, exponential, and nonsmooth (ℓ1 and total variation norm based) regularization methods.
KEYWORDS: Tissues, Sensors, Near infrared, Animal model studies, Signal attenuation, Monte Carlo methods, Absorption, Data modeling, Optical properties, Diffusion
The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer–Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological tissues, which is a generalized version of the Beer–Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We included numerous human and animal tissues to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in providing accurate modeling of NIR light propagation in biological tissues.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.