The Wigner distribution function is used to display data obtained from a bistatic radar imaging setup. In particular, a scheme is developed to exploit the properties of the Wigner function for subsurface detection. Based on heuristic considerations it is argued that in the Wigner domain a separation of surface scattering and target signal is possible depending on the properties of the respective local plane wave spectra. An intuitive understanding of the phase space approach is developed from the case of a point target located underneath a planar dielectric interface. In addition, data based on rigorous computations of rough surface scattering are used to validate the method.
In this paper, we address some of the most difficult problems encountered in surface scattering. The first part is devoted to our recent work about the rigorous solution for 2D metallic surfaces. An impedance approximation has been implemented to take into account the finite conductivity of the metals, and, to deal with surfaces of arbitrary size, the beam simulation method has been generalized. But still, several problems cannot be rigorously solved in three dimensions. One of them concerns shallow metallic surfaces in optics: how taking accurately into account the propagation of surface polaritons? A second challenge consists in solving a surface scattering problem under grazing incidence. Since the field on the surface spreads out in both problems, the same answer holds. The surface current is described in the Fourier space, while the sampling of the rigorous integral equation is still achieved in the coordinate space. The number of unknowns is drastically reduced, and standard forward solvers can be used. The last problem studied here is a step towards the inverse problem. What kind of geometrical parameter describing the surface can be extracted from intensity measurements in the far field? For multi-scale rough surfaces, we show that the wavelet correlation dimension is a good candidate for such a characterization.
A code based on Maxwell equations has been developped in order to investigate the problem of scattering by deterministic and random rough surfaces. Numerical data on absorption and enhanced backscattering phenomena are shown.
Conference Committee Involvement (3)
Image Reconstruction from Incomplete Data V
11 August 2008 | San Diego, California, United States
Image Reconstruction from Incomplete Data IV
14 August 2006 | San Diego, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.