In the past two years significant forward progress has been achieved in development of Adaptive Optics sensing and control technology needed for the observation modes of the Giant Magellan Telescope1. Most notable is the recent progress in demonstrating the accurate and stable control of segment piston in the diffraction-limited Natural Guide Star AO observation mode. Two NSF-funded testbeds have been successfully operated to validate the control algorithms for active optics, adaptive optics and segment piston in diffraction-limited observation. GMTO also built and operated wavefront sensor prototypes and integrated them with the testbeds. The testing has largely validated the wavefront sensor designs and has retired much of the fabrication and assembly risks. In parallel with the hardware demonstrations, significant progress has been achieved in both NGAO and LTAO control simulations verifying compliance with the required performance in each of these observation modes and thereby supporting the image quality budgets. In the area of design the GMTO Telescope Metrology Subsytem has passed its Preliminary Design Review and the conceptual design of the Adaptive Optics Test Camera has been completed. Finally, a Delta Preliminary Design phase for the LTAO hardware has begun.
We report on results from the laboratory wide-field phasing testbed that has been constructed to validate the active optics and piston sensing hardware and algorithms to be used on the Giant Magellan Telescope. The GMT is comprised of seven primary (M1) mirror segments, and seven secondary (M2) segments. To maintain a high quality wavefront across the full LTAO field-of-view, telescope aberrations must be controlled at M1 and M2 independently. This will be done on GMT using the 4 off-axis wavefront sensors of the Acquisition, Guiding and Wavefront-sensing System (AGWS). With the double segmented nature of the GMT, the most challenging aberration to control is field-dependent piston, which results from tilts of M1 segments that are compensated by tilts of the corresponding M2 segment. We report here on wavefront sensing experiments conducted with a full-scale prototype AGWS wavefront sensor fed by a GMT optical simulator called the Wide-Field Phasing Testbed (WFPT). With the WFPT we introduce aberrations on M1 and M2, including simulated atmospheric turbulence and a variety of guide-star magnitudes. The AGWS measures the resulting off-axis aberrations, and then corrects the M1 and M2 aberrations. We describe the wavefront reconstructors used to generate the corrections and the performance over a range of conditions.
This article presents new hyperspectral imaging (HSI) results from a standoff chemical detection system that utilizes monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs) as a source, with each array element at a slightly different wavelength than its neighbor. In this rastering approach to HSI, analysis of analyte/substrate pairs benefits from a laser source with characteristics offered uniquely by a QCL Array. In addition to describing the HSI system developed, a description of experimental standoff detection results using the man-portable system from 1.4 meters are presented. We present HSI results on two very different chemical substrate pairs; trace solid PETN on aluminum and the liquid VX on polycarbonate.
A hyperspectral beam-scanning microscope operating in the long wave infrared (LWIR) is demonstrated for future application to stand-off imaging platforms. A 32-channel quantum-cascade laser (QCL) array enables rapid wavelength modulation for fast hyperspectral imaging through sparse sampling in position and wavelength, which when coupled with image reconstruction techniques can enhance frame rate. Initial measurements of dichloromethane and water mixtures are shown, utilizing spectral information for classification across the field of view. Ongoing efforts aim to utilize copropagating visible and IR beams to enhance spatial resolution for the IR measurements by combining spatial information retrieved from visible images obtained concurrently. Future work will leverage Lissajous trajectories for sparsely-sampled beam-scanning and extend the image interpolation algorithms to arbitrary dimension for sparse sampling in the spectral domain. Simulations of the error associated with various sparse-sampling methods are also presented herein which support the use of Lissajous trajectories as a sparse-sampling method in beam-scanning microscopy.
We report on a quartz-enhanced photoacoustic (QEPAS) sensor employing a monolithic distributed-feedback quantum cascade laser array operating in a pulsed mode as a light source. The array consists of 32 quantum cascade lasers emitting in a spectral range from 1190 cm-1 to 1340 cm-1, which covers two absorption branches of nitrous oxide (N2O) and several absorption features of (CH4). The versatility of the QEPAS technique combined with the rapid wavelength tuning provided by the ultra-compact, low-power consuming laser source allowed the detection of N2O and CH4 with detection sensitivities below a part-per-million at atmospheric pressure.
This presentation introduces the spectroscopic concepts and results enabled by arrays of Distributed Feedback (DFB) QCLs, with each element at a slightly different wavelength than its neighbor. In portable optical systems, such as standoff threat detectors and in situ gas analyzers, this increases analyte sensitivity and selectivity by broadening spectral source coverage while also allowing for extremely fast all-electronic wavelength tuning with no moving parts.
This talk will first present the QCL array and its packaging, then move into the description of an integrated prototype standoff detection system, and finally show condensed phase standoff threat detection results from a handheld system from over 1 meter. These data are each compared with legacy contact-based methods to ensure that the technique can be reliably deployed to handheld chemical analysis using suitable chemometric algorithms.
The data show how monolithic and all-electronic tuning enables next-generation spectroscopes that are not only more robust and miniature than those that utilize external cavity-tuned lasers, but that are inherently more stable in terms the shot-to-shot amplitude and wavelength parameters. This enhanced stability increases signal to noise for a given configuration (pathlength, averaging time, concentration, etc…). Some discussion of how to maximize the benefits of high speed, highly reproducible tuning is presented, including detector, preamplifier, and digitization considerations.
Quantitative laser spectroscopic measurements of complex molecules that have a broad absorption spectra require broadly tunable laser sources operating preferably in the mid-infrared molecular fingerprint region. In this paper a novel broadband mid-infrared laser source comprising of an array of single-mode distributed feedback quantum cascade lasers was used to target a broadband absorption feature of benzene (C6H6), a toxic and carcinogenic atmospheric pollutant.
The DFB-QCL array is a monolithic semiconductor device with no opto-mechanical components, which eliminates issues with mechanical vibrations. The DFB-QCLs array used in this work provides spectral coverage from 1022.5 cm-1 to 1053.3 cm-1, which is sufficient to access the absorption feature of benzene at 1038 cm-1 (9.64 μm).
A sensor prototype based on a 76 m multipass cell (AMAC-76LW, Aerodyne Research) and a dispersive DFB-QCL array beam combiner was developed and tested. The Allan deviation analysis of the retrieved benzene concentration data yields a short-term precision of 100 ppbv/Hz1/2 and a minimum detectable concentration of 12 ppbv for 200 s averaging time. The system was also tested by sampling atmospheric air as well as vapors of different chemical products that contained traces of benzene.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.