Breast cancer is the most common cancer, and early detection is important to improve survival rates. For diagnosis, new imaging modality are required. Photoacoustic imaging (PAI) is arguably the most exciting 3D molecular imaging technique, since it provides functional information on the hemoglobin distribution in breast that can be used to identify malignant lesions. PAI is an absorption technique where optical pulses are used to generate sound waves. It combines both the advantages of the high contrast of optical imaging and the deep penetration of acoustic imaging. We have developed an extreme sensitivity optomechanical ultrasound sensor. This sensor enables broadband, high-resolution PAI and present great future promise in advancing breast cancer screening.
Photoacoustic tomography defines new challenges for ultrasound detection compared to ultrasonography. To address these challenges, a sensitive, small, scalable, and broadband optomechanical ultrasound sensor (OMUS) has been developed. The OMUS is an on-chip optical ultrasound sensor, using optical interferometric ultrasound detection. It consists of an acoustic membrane on top of an optical ring resonator that modulates the optical ring resonance with high efficiency enabled by an innovative optomechanical waveguide. Raster scanning photoacoustic tomography has been demonstrated with a single-element OMUS. Based on performance and form factor, the OMUS combined with passive optical multiplexing may enable new applications in photoacoustic imaging
We propose a new opto-mechanical ultrasound sensor (OMUS) enabled by an innovative silicon photonics waveguide. We present experimental results up to 30 MHz, a 10-sensor array proof-of-concept and our latest findings.
Future applications of photo-acoustic imaging require a matrix of small (wavelength/2) and sensitive ultrasound sensors with read-out through a flexible cable. Integrated optical sensors have good prospects: small and sensitive sensors, wafer-scale fabrication, and matrix read-out via single optical fiber using on-chip optical multiplexing. We propose a new type of opto-mechanical ultrasound sensor (OMUS) in silicon photonic chip technology. By using an acoustically resonant membrane in combination with an innovative split rib-type photonic waveguide, we achieve extremely high sensitivity. We present our experimental results in the frequency range up to 30 MHz.
Future applications of ultrasound and photoacoustic imaging require a matrix of small and sensitive ultrasound sensors with read-out through a flexible cable. Silicon photonic ultrasound sensors have good prospects: small and sensitive sensors, wafer-scale fabrication, and matrix read-out via single optical fiber using photonic multiplexing. Here, we discuss different types of silicon photonic ultrasound sensors and their applications. This includes our optomechanical ultrasound sensor with extreme sensitivity that is achieved with an innovative optomechanical silicon photonic waveguide in an acoustical membrane. We discuss limitations of state-of-the-art piezoelectric sensors, how silicon photonic sensors overcome these, and applications in medical imaging.
Fluorescence microscopy is an indispensable tool in biology and medicine, fuelling many breakthrough discoveries in a wide set of sub-domains. Yet, the resolution is intrinsically restricted by the diffraction limit. The last two decades have witnessed the emergence of several super-resolution fluorescence microscopy techniques that are breaking this limit (cfr. Nobel Prize in Chemistry 2014). Structured illumination microscopy (SIM) is one of such techniques that has gained much popularity and is available in commercial systems. In SIM, a biological sample is illuminated by a spatially structured light field — a sinusoidal interference pattern — which causes normally inaccessible high-resolution information to be encoded into the observed image due to the Moiré effect. Typically, the illumination patterns are generated by a grating or SLM and focused onto the sample through an objective lens to excite the fluorophores. Next, the fluorescence is transmitted to the imager through the same lens. Multiple images are taken under certain illumination patterns and used to reconstruct a single super-resolved image. However, making use of free space optics, state-of-the-art SIM systems require multiple bulky and precision optical components that give these systems the drawbacks of high cost and cumbersome size.
In this talk, a structured illumination microscopy system based on a photonic integrated circuit (PIC) is presented. The unique properties of photonic integrated circuits allow us to create truly innovative microscopy systems that have the potential to go well beyond the current state-of-the-art: higher resolution due to the use of high refractive index materials, easier alignment with on-chip illumination light path, large field of view, a compact form factor resulting from on-chip integration, and lower cost due to compatibility with CMOS chip fabrication.
For many applications in life sciences, the biologically relevant information is probed by means of visible light. Many of the critical optical components have, unfortunately, still a large footprint and heavy price tag. Silicon nitride integrated waveguide optics –allowing for complex routing schemes of visible light across a chip– assumes a promi-nent role in the progressing miniaturization of optical devices. However, in order to have the light in the chip interro-gate a distant biological entity, diffraction gratings have to be used to couple light out of the chip.
Ideally, all the light from a waveguide would be coupled out into a beam with a predefined polarization, phase, and intensity profile. As such they should be able to produce any functional beam that is typically prepared by free space optical components. For a standard, linear grating an exponential intensity decay is observed along the grating, i.e., more light is coupled out at the start than at the end.
Here, we present a specially designed metasurface that is able to deliver highly uniform illumination escaping the photonics chip in a collimated beam at a predesigned angle. Because of its integrated nature, a component like this is highly relevant for the miniaturization of, e.g., flow cytometry applications. We therefore include microfluidic chan-nels on top of the photonics chip and demonstrate the cytometric capabilities with fluorescent polystyrene beads. The opto-fluidic chips are processed in a CMOS pilot line. Our work demonstrates the potential of integrated visible pho-tonics and flat optics for life science applications.
Supercritical angle fluorescence (SAF) is a near-field collection method that has surface sensitivities similar to or better than near-field excitation techniques like TIRF and waveguide based excitation. SAF is emitted by fluorophores that are a few hundred nanometers away from an interface, above the critical angle, into the higher index material. SAF decreases exponentially with increasing distance from the interface and is therefore more sensitive to molecules near the surface. Although a lot of research has used SAF for biosensing and microscopy, the angular dependence of SAF on both the surface and bulk fluorescence contributions hasn’t been experimentally studied. We present a method that measures the surface selectivity of SAF in the presence of bulk fluorophores. Two different fluorophores were used. One was bound to the surface and the other was suspended in the bulk. The spectrum was measured at discrete points in the back focal plane (BFP) and the contribution of the two fluorophores was extracted from it. The results of the experiment show the highest signal-to-noise ratio in the region just above the critical angle of 61.31º because of the higher signal intensity. However, for experiments where bulk exclusion is important, we observe the highest signal-to-bulk ratio at angles above 68˚ for a glass-water interface. Understanding the angular dependence on the sensitivity of a SAF biosensor enables tuning the collection angles towards specific applications and could lead to the creation of smaller, more sensitive devices.
KEYWORDS: Biological and chemical sensing, Chemistry, Near field, Waveguides, Molecules, Luminescence, Biosensing, Data modeling, Fluorescence spectroscopy, Nanophotonics
Fluorescence is a widely used transduction mechanism in bio-imaging, sensing or physical chemistry characterization applications. The ability to selectively excite desired molecules without generating considerable bulk background from nearby molecules is very important for all these applications. A near field excitation using an exponentially decaying evanescent field is often used to reduce the bulk background by selectively exciting molecules near to the surface. We propose an on-chip platform to improve the surface and bulk fluorescence separation by combining near-field excitation and near-field collection. We used the exponentially decaying evanescent tail of a Silicon Nitride rib waveguide to excite molecules and coupled the subsequent emission back via the same waveguide. We observe from the finite difference time domain simulation that both the excitation and coupling efficiency depend exponentially on the surface-molecule distance. Thus, combination of near field excitation and collection improves surface-bulk separation. A reduction by half in effective 1/e decay length was found experimentally for this combined near-field excitation and collection technique compare to the conventional only near-field excitation based technique .
An analytical model is derived to find the optimum device efficiency for bio-sensing applications and established a general condition for sensor length to maximize the device efficiency and validated by experimental data.
Finally, we used this platform for Fluorescence Correlation Spectroscopy and steady-state fluorescence anisotropy measurement.
In this talk, I will present the fabrication, characterization and experimental results obtained using this proposed waveguide based platform.
Often, in bio-sensing applications rely on fluorescence as the transduction mechanism. The emission from the fluorescently labeled molecules is detected and quantified to obtain the concentration. Most current techniques, such as ELISA, FISH, next generation DNA sequencing and others need one or several washing steps to remove the unreacted fluorescent molecules to reduce the background noise.
To address that problem, we propose an integrated nano-photonic solution for on-chip fluorescence detection. The proposed platform is tailored for bio-sensing applications and has the potential to analyze bio-molecular interactions down to the single molecule level. The technology is based on near-field excitation and collection using PECVD Silicon Nitride (SiN) nano-photonic rib waveguides. SiN provides the combination of high-index-contrast and compatibility with CMOS processing technology, and unlike silicon, Silicon Nitride does not absorb in the visible wavelength window.
The evanescent tail of the used SiN waveguide mode extends from 80 nm to 200 nm above the waveguide surface depending on the waveguide geometry, cladding material and excitation wavelength. Hereby, the evanescent field of the waveguide mode excites a very thin layer of molecules near to the surface. The subsequent emission from the excited fluorophore is collected in the near field by coupling to another waveguide. The coupling strength mainly depends on the distance between the waveguide and fluorophore. This way, both the excitation and collection efficiency have an exponential dependency on the distance between the molecule and waveguide surface. Therefore, exciting and collecting fluorescence using photonic waveguides improves the separation between the surface bound fluorescence signal from the bulk background noise, paving the way for wash free bio-sensing. Wash-free assays allow to examine the bio-molecular interactions in real time and simplify the sample/liquid handling system.
Next to bulk fluorescence, autofluorescence generated in the SiN waveguide is another large contributor to noise. In the proposed design, the two separate single mode waveguides we use to excite fluorophores and collect the emission, are placed orthogonally in a cross configuration. The orthogonal placement of two Transverse Electric (TE) mode waveguides makes sure that the auto-fluorescence generated in the excitation waveguide is not coupled to the emission waveguide. As a result, we observe an improved signal-to-noise-ratio (SNR) which is a very critical parameter towards single molecule detection.
In this talk, I will talk about the design, fabrication and characterization of the proposed cross-configured waveguide based fluorescence detection platform. Experimental results to quantify the excitation efficiency, collection efficiency and SNR will be discussed. A comparison will be shown between the Finite Difference Time Domain (FDTD) simulation and experimental results.
Fluorescence detection is a commonly used technique to detect particles. Microscopes are used for the fluorescence detection of the micro-particles. However, the conventional microscopes are bulky. It is cumbersome to integrate all the equipment used for detection in one setup. They can be replaced by photonic chips for the detection of micro-particles such as cells. Most of the biological detection techniques require the utilization of the visible range of the spectrum. SiN as a waveguide material stands out for biological applications due to its transparency in the visible spectrum. Specifically designed grating couplers can be exploited to focus from inside SiN waveguides at a designated location above the chip. Those SiN focusing grating couplers can mimic microscope objectives for on-chip biological detection applications such as fluorescence and Raman spectroscopy. In this report, we present a 2D SiN focusing grating coupler. We study the effect of the grating design on the focus properties of visible light using finite-difference time-domain simulations.
Low temperature PECVD silicon nitride photonic waveguides have been fabricated by both electron beam lithography and 200 mm DUV lithography. Propagation losses and bend losses were both measured at 532 and 900 nm wavelength, revealing sub 1dB/cm propagation losses for cladded waveguides at both wavelengths for single mode operation. Without cladding, propagation losses were measured to be in the 1-3 dB range for 532 nm and remain below 1 dB/cm for 900 nm for single mode waveguides. Bend losses were measured for 532 nm and were well below 0.1 dB per 90 degree bend for radii larger than 10 μm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.