The Single Aperture Large Telescope for Universe Studies (SALTUS) is a mission concept for a far-infrared observatory developed under the recent Astrophysics Probe Explorer opportunity from the National Aeronautics and Space Administration. The enabling element of the program is a 14-m diameter inflatable primary mirror, M1. Due to its importance to SALTUS and potentially other space observatories, we focus entirely on M1. We present a historical overview of inflatable systems, illustrating that M1 is the logical next step in the evolution of such systems. The process of design and manufacture is addressed. We examine how M1 performs in its environment in terms of the operating temperature, interaction with the solar wind, and shape change due to non-penetrating particles. We investigate the longevity of the inflatant in detail, show that it meets mission lifetime requirements with ample margin, and discuss the development and testing to realize the flight M1.
A typical inflatable reflector for space application consists of two thin membranes with a parabolic shape. It is critical to understand the interaction of the inflatable and the micrometeoroid environment to which it is exposed. This interaction leads to a series of penetrations of the inflatable membrane on the entrance and exit of the impacting particle, creating a pathway for gas to escape. To increase the fidelity of the of the estimated damage that will be incurred, we examine the literature for descriptions of micrometeoroid fragmentation and present a theoretical formulation for the damage caused by an impacting particle to the entrance and exit membranes. This theory is compared with an initial set of hyper-velocity tests for micrometeoroid-sized particles on thin film membranes. We use the results of these tests to produce a predictive model. This model is applied to estimate the damage rate near the 1 AU location and output predictions for the effectiveness of a micrometeoroid shield to reduce the damage on the lenticular and effectively optimize its lifetime. Finally, we apply the kinetic theory of gasses to develop expressions for the expenditure of gas over a specified mission lifetime due to penetrations. Although we examine the specific case of an inflated lenticular protected by extra membrane layers, our predictive model can be applied to any gossamer structure composed of polyimide membranes.
KEYWORDS: Particles, Solar processes, Space operations, Reflectors, Sun, Data modeling, Telescopes, James Webb Space Telescope, Tolerancing, Solar radiation
This paper discusses pressure control for the OASIS primary antenna element, A1. This discussion is centered around the evaluation of pressure changes and what might drive them. A1 is created from thin polyimide film and from its orbital position near Sun-Earth L1, is subject to many environmental effects, the solar wind, radiation pressure, charging and micrometeoroids. This paper begins by describing the architecture of the pressure control system. We show that the solar wind and radiation pressure are too small to impact A1’s performance. We also discuss the need to connect the A1 to system ground for solid technical and programmatic reasons. A large section discusses the micrometeoroid environment and how recent mission data shows that the flux faced by OASIS is likely larger by factor of ~3 than might be expected from naïve application of the traditional models.
Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) is a mission concept being developed in preparation for the 2021 MidEX Announcement of Opportunity. This paper describes the key features of the OASIS architecture as they are currently understood. OASIS’s choice of a large inflatable primary reflector results in large collection areas at very high mass efficiency enabling the science mission. We describe the spacecraft bus, based on Northrop Grumman’s LEOstar-2, and the receiver, a heritage design based on the GUSTO balloon heterodyne system. We also discuss the observing strategy and pointing requirements from its planned L1 location. Particular emphasis is placed on challenges to the design, such as momentum management, balancing consumable mass allocations, thermal management, and testing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.