Our studies of second generation immersion fluid candidates are moving beyond the discovery phase, and into addressing issues for their commercial application. Thus, we continue work to examine and fundamentally understand fluid transparency and refractive index, to fully optimize these properties. At the same time, we are now examining other process concerns, including index variation with temperature, new imaging performance studies, fluid handling considerations, and fluid property maintenance with active recycle during lithographic exposure. The systems and procedures we have developed in these areas continue to show our fluids' promise for sub-45nm immersion lithography applications.
Water-based immersion lithography using ArF illumination is able to provide optical solutions as far as the 45-nm node, but is not able to achieve the 38- or 32-nm nodes as currently defined. Achieving these lithographic nodes will require new, higher refractive index fluids to replace the water used in first-generation immersion systems. We have developed a number of such second-generation high-index fluids for immersion lithography at 193 nm. These highly transparent fluids have 193-nm indices up to 1.664. To understand the behavior and performance of different fluid classes, we use spectral index measurements to characterize the index dispersion, coupled with Urbach absorption edge analysis and Lorentz Oscillator modeling. Interference imaging printers have long been available, and they now have a new use: a rapid, cost-effective way to develop immersion lithography, particularly at extremely high resolutions. Although interference printers will never replace classical lens-based lithography systems for semiconductor device production, they do offer a way to develop resist and fluid technology at a relatively low cost. Their simple image-forming format offers easy access to the basic physics of advanced imaging. Issues such as polarization of the image-forming light rays, fluid/resist interaction during exposure, topcoat film performance, and resist line edge roughness (LER) at extremely high resolutions, can all be readily studied. 32-nm 1:1 line/space (L/S) imaging is demonstrated using two of the second-generation fluids. These resolutions are well beyond current lens-based system capabilities. Results on the performance of various resists and topcoats are also reported for 32-nm L/S features.
Water is the first generation immersion fluid for 193 nm immersion lithography. With a fluid refractive index of 1.436 and an optical absorbance of 0.01/cm at 193 nm, water immersion technology can enable optical lithography for the ITRS’ 65 nm half-pitch node. However, to achieve numerical apertures above 1.35 and to go beyond the 45 nm node, low absorbance fluids with indices higher than 1.6 are needed for the second generation of immersion lithography.
We have developed a number of Gen. 2 high index fluids for immersion lithography at 193 nm. These highly transparent fluids have 193 nm indices up to 1.67. 32 nm 1:1 line space imaging has been demonstrated using two of our Gen 2 candidate fluids, representing major advance in optical lithography. To understand the behavior and performance of different fluid classes, we use spectral index measurements to characterize the index dispersion, coupled with Urbach absorption edge analysis, and Lorentz oscillator modeling.
Michael Crawford, William Farnham, Andrew Feiring, Jerald Feldman, Roger French, Kenneth Leffew, Viacheslav Petrov, Weiming Qiu, Frank Schadt, Hoang Tran, Robert Wheland, Fredrick Zumsteg
We have developed a family of 157 nm resists that utilize fluorinated terpolymer resins composed of 1) tetrafluoroethylene (TFE), 2) a norbornene fluoroalcohol (NBFOH), and 3) t-butyl acrylate (t-BA). TFE incorporation reduces optical absorbance at 157 nm, while the presence of a norbornene functionalized with hexafluoroisopropanol groups contributes to aqueous base (developer) solubility and etch resistance. The t-butyl acrylate is the acid-catalyzed deprotection switch that provides the necessary contrast for high resolution 157 nm imaging. 157 nm optical absorbances of these resists depend strongly upon the amount of t-BA in the polymers, with the TFE/NBFOH dipolymers (which do not contain t-BA) exhibiting an absorbance lower than 0.6 μm-1. The presence of greater amounts of t-BA increases the absorbance, but also enhances the dissolution rate of the polymer after deprotection, yielding higher resist contrast. Formulated resists based upon these fluorinated terpolymer resins have been imaged at International Sematech, using the 157 nm Exitech microstepper with either 0.6 NA or 0.85 NA optics. We have carefully explored the relationship between imaging performance, resist contrast, optical absorbance, and t-BA content of these terpolymer resist resins, and describe those results in this contribution.
During the past year the probability that 157 nm lithography will precede next generation lithographies such as EUV or EPL has increased, partly due to encouraging advances in the design of polymeric materials, which have sufficient transparency at 157 nm to serve as platforms for single layer photoresists. We have identified several fluorinated resins which can be developed in aqueous 0.26 N TMAH, have reasonable etch resistances (comparable to poly-parahydroxystyrene), and can be formulated to yield photoresists with optical absorbancies at 157 nm which are low enough to be used at thicknesses of 150-200 nm. We have imaged a number of these formulated resists at 157 nm with the Exitech microstepper at International Sematech, and the results for formulated resists with optical absorption coefficients (base 10) as low as 2.1 per micron are described.
Michael Crawford, Andrew Feiring, Jerald Feldman, Roger French, Mookkan Periyasamy, Frank Schadt, Robert Smalley, Fredrick Zumsteg, Roderick Kunz, Veena Rao, Ling Liao, Susan Holl
The design of an organic material satisfying all of the requirements for a single layer photolithography resist at 157 nm is a formidable challenge. All known resists used for optical lithography at 193 nm or longer wavelengths are too highly absorbing at 157 nm to be used at film thicknesses greater than approximately 90 nm. Our goal has been to identify potential, new photoresist platforms that have good transparency at 157 nm (thickness normalized absorbance of 2.5 micrometer-1 or less), acceptable plasma etch resistance, high Tg and compatibility with conventional 0.26 N tetramethylammonium hydroxide developers. We have been investigating partially fluorinated resins and copolymers containing transparent acidic groups as potential 157 nm photoresist binders; a variety of material with promising initial sets of properties (transparency, etch resistance, solubility in aqueous TMAH) have been identified. Balancing these properties with imaging performance, however, remains a significant challenge.
The ionic conductivity and damage susceptibilities of KTP crystals are related to the defects present in the crystals, which result from the conditions of growth by the flux, high, and low temperature hydrothermal techniques. The effects of Ba impurities on the ionic conductivity and damage are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.