Free-space optical (FSO) communications are becoming promising schemes for high-capacity wireless links due to their plentiful characteristics originated from higher carrier frequency. These characteristics also yield a greater security advantage over radio frequency counterparts: the physical ability of a wiretapper is reasonably restricted due to the high directionality of communication beam and the line-of-sight configuration of the link. Secret key agreement over FSO links (FSO-SKA) employs this security advantage as well as the post-processing over an authenticated public channel to establish an information-theoretic secure key which cannot be broken even with unbounded computer resources. In the previous works, the authors demonstrated the full-field implementations of FSO-SKA with a 7.8-km FSO link testbed including a probing station to estimate the possible wiretapping risks from the sidelobe of the communication beam. In the demonstration, however, there is still room to improve the secret key rate by exploiting the optical fading which contains additional information about random states of the FSO links. We here propose a novel protocol for FSO-SKA employing such channel state information. In the protocol, the legitimate receiver decides whether to discard the received symbols or not according to the received optical power at the time. Based on the experimental data from the FSO link testbed, we demonstrate that the proposed protocol improves the secret key rate compared with our previous result. To our best knowledge, this is the first demonstration that exploits the effect of atmospheric turbulences to improve the security performance of communication systems. We anticipate that this idea will be applicable on the broader areas of FSO communications and opens a way toward practical wireless network spanned by FSO links.
Research and development of a novel method for a secure free-space optical communication system has been done in NICT since 2018, and demonstration experiments between an aircraft and a transportable optical ground station are planned in near future. In order to establish a stable and highly accurate optical communication link, the system must have a fine pointing mechanism in both the aircraft and the ground station. A compact and light-weight tracking system is required to be mounted on the aircraft, and there will be needed to have an adjustment function of the beam divergence control to allow stable communication under various altitude and atmospheric conditions. The transportable optical ground station should maintain vibration resistance when moving, and it must be easily deployed on each site where is the appropriate optical ground station site with respect to atmospheric turbulence condition.
The transmission and reception of polarized quantum-limited signals from space is of capital interest for a variety of fundamental-physics experiments and quantum-communication protocols. Specifically, Quantum Key Distribution (QKD) deals with the problem of distributing unconditionally-secure cryptographic keys between two parties. Enabling this technology from space is a critical step for developing a truly-secure global communication network. The National Institute of Information and Communications Technology (NICT, Japan) performed the first successful measurement on the ground of a quantum-limited signal from a satellite in experiments carried out on early August in 2016. The SOTA (Small Optical TrAnsponder) lasercom terminal onboard the LEO satellite SOCRATES (Space Optical Communications Research Advanced Technology Satellite) was utilized for this purpose. Two non-orthogonally polarized signals in the ~800-nm band and modulated at 10 MHz were transmitted by SOTA and received in the single-photon regime by using a 1-m Cassegrain telescope on a ground station located in an urban area of Tokyo (Japan). In these experiments, after compensating the Doppler effect induced by the fast motion of the satellite, a QKD-enabling QBER (Quantum Bit Error Rate) below 5% was measured with estimated key rates in the order of several Kbit/s, proving the feasibility of quantum communications in a real scenario from space for the first time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.