Structural health monitoring (SHM) is a growing field with many applications in the aerospace, civil, and mining industries. There has been a desire to develop SHM systems to operate in the microsecond timescale during highly dynamic events. Current efforts have focused on creating an impedance measurement system using the electromechanical impedance (EMI) method technique. In order to consider ways to decrease the time required to measure the impedance of a system, researchers have considered taking measurements at higher frequencies. As part of this research, it is important to consider the sensitivities and capabilities of the sensors to detect changes in the structure at higher frequencies (up to MHz). The goal for this study is to evaluate the sensitivity of the EMI method to damage using a PZT disk bonded to a cantilevered aluminum beam using a finite element (FE) model as well as experimental data. Damage was created by adding holes along the length of the beam, incrementally moving closer to the PZT disk. As a result of this study, an FE model has been developed using previously introduced methods to characterize the material properties of a PZT disk with an optimization algorithm. While initial coefficients resulted in a significant deviation of FE resonance peaks from experimental results, when using the optimized parameters the FE model accurately matches the experimental data. Modeling of the PZT when bonded to the aluminum beam showed a similar trend, there is not an exact match between the model and experimental data. This can be attributed to the material properties of the aluminum beam, which are from a general data sheet for the 6061-T6 and not data from the actual beam. In addition, the bonding layer is not modeled in the FE simulation, which can be a cause of the error in the modeling results. In both the model and experimental data, indications of damage from the impedance curves occurred below 600 kHz.
For the past century, developing an understanding of human locomotion has been instrumental in advancing orthopedic medical knowledge and technology. Historically, the field of human gait analysis has relied on force plates to investigate the forces occurring between feet and contacted surfaces. A new thrust in recent years has been to investigate foot contact forces by using specialized force sensing insoles. The medical community has already benefited from initial force sensing insole designs. Despite this technological advancement, the currently existing force sensing insoles are largely “one size fits all.” This presents a challenge for the medical community as an accurate and ergonomic measurement system is not available for patients with special orthopedic needs such as those with flat feet or diabetic ulcers. Introduced here is the potential solution of using soft 3D printed material, called NinjaFlex, to develop custom, ergonomic insoles which possess embedded force sensors for plantar pressure detection. In this paper, groundwork for developing such a custom force sensing insole is laid by investigating the ability to use force sensors embedded into a geometrically simplistic 3D printed structure to detect forces applied to the overall system. Three different force sensors are investigated and their ability to accurately detect force in this configuration is compared. Additionally, a simple model relating sensed force to force applied to the system is developed. The intentions of this work are to verify the feasibility of a custom force sensing insole which further benefits the medical community.
KEYWORDS: Transducers, Sensors, Ferroelectric materials, Surgery, Prototyping, Signal generators, In vivo imaging, Signal processing, MATLAB, Data acquisition
Total knee arthroplasty, as one of the most common surgeries in the United States, has been widely used to help restore the functionality of damaged knee joints. Alignment of the knee joint during surgery is an extremely important factor to achieve a successful operation. Several methods have been used to quantify the alignment and to provide surgeons with a repeatable method of surgery. However, lack of in vivo information has hindered establishment of correlation between intra- and postoperative knee conditions. In this work, the application of multiple piezoelectric transducers encapsulated inside the ultra high molecular weight polyethylene knee bearing for collecting in vivo data is suggested. The piezoelectric elements display the ability to sense and harvest energy from the joint during daily activity. As a sensor, piezoelectric transducers are designed to measure the compartmental forces as well as the location of the contact points between the femoral and tibial components of the knee implant. Initially, finite element analysis is performed to investigate the sensing performance of the system. In addition, a prototype instrumented bearing is fabricated and the performance of the system in measuring the forces and locations is investigated experimentally. In the experiments, the voltage signals generated by the piezoelectrics are obtained and processed to measure two components of force as well as two different contact points, one each on the medial and lateral compartments of the knee bearing. On the other hand, the actual force profile and the location of contact areas are recorded using the load frame’s built in load cell, and pressure-sensitive films, respectively, and compared to the measured data from the piezoelectrics. The result of FE simulation showed a maximum error of about 1.5% in force sensing and a maximum deviation of about 0.5 mm in the measured location of the contact points. The experimental results also showed that the measured force and location by the piezoelectric sensors match the actual quantities measured from load frame and pressure film fairly well.
A common application of piezoelectric transducers is to obtain operational data from working structures and dynamic components. Collected data can then be used to evaluate dynamic characterization of the system, perform structural health monitoring, or implement various other assessments. In some applications, piezoelectric transducers are bonded inside the host structure to satisfy system requirements; for example, piezoelectric transducers can be embedded inside the biopolymers of total joint replacements to evaluate the functionality of the artificial joint. The interactions between the piezoelectric device (inhomogeneity) and the surrounding polymer matrix determine the mechanical behavior of the matrix and the electromechanical behavior of the sensor. In this work, an analytical approach is employed to evaluate the electromechanical performance of 2-D plane strain piezoelectric elements of both circular and rectangular-shape inhomogeneities. These piezoelectric elements are embedded inside medical grade ultra-high molecular weight (UHMW) polyethylene, a material commonly used for bearing surfaces of joint replacements, such as total knee replacements (TKRs). Using the famous Eshelby inhomogeneity solution, the stress and electric field inside the circular (elliptical) inhomogeneity is obtained by decoupling the solution into purely elastic and dielectric systems of equations. For rectangular (non-elliptical) inhomogeneities, an approximation method based on the boundary integral function is utilized and the same decoupling method is employed. In order to validate the analytical result, a finite element analysis is performed for both the circular and rectangular inhomogeneities and the error for each case is calculated. For elliptical geometry, the error is less than 1% for stress and electric fields inside and outside the piezoelectric inhomogeneity, whereas, the error for non-elliptical geometry is obtained as 11% and 7% for stress and electric field inside the inhomogeneity, respectively.
Force plates are used to detect static and dynamic reaction forces due to presence of stationary or moving objects as well as the location of applied forces. The application of force plates in various biomechanical fields, such as gait analysis, has been widely suggested and investigated in the past. Several sensor technologies like piezoelectrics, capacitance gauges, and piezoresistive sensors are utilized to develop force plates with special characteristics. Among the technologies employed in force plate designs, piezoelectrics present the ability of providing a self-powered sensory system. Recently, it has been suggested to implement piezoelectric transducers as sensors in the tibial bearing of total knee replacement (TKR) implants in order to transform the knee bearing into a force plate with the ability to detect force and contact point location for in vivo knee load analysis. Considering this application, a simplified design of a force plate instrumented with six piezoelectric transducers is presented in this study. The force plate is modeled using a finite element (FE) model to investigate the sensing performance of the system. In order to validate the simulation, a prototype force plate is fabricated and tested under the same loading condition applied on the FE model. The results are presented in terms of measured location and amplitude of applied force measured by the piezoelectric transducers. For the FE simulation, the deviation of the measured location of the applied force from the actual location is obtained as 0.62 mm in the x-direction and 0.13 mm in the y-direction, and the error in the amplitude of the measured force is 0.03% of the applied force. On the other hand, the deviation in the measured location of the force from the experimental test is 0.53 mm in the x-direction and 0.1 mm in the y-direction, while the error in force is 3.6% of the applied force. The small quantities of error in both sensed location and amplitude of applied force obtained from the FE simulation and experimental test results demonstrates the potential of the proposed design to be utilized as the sensor in the knee bearing of TKR implants.
KEYWORDS: Energy harvesting, Ferroelectric materials, Transducers, Sensors, Data modeling, Surgery, Systems modeling, Gait analysis, Finite element methods, In vivo imaging, Data acquisition, Magnetic sensors
Total Knee Replacement (TKR), one of the most common surgeries in the United States, is performed when the patient is experiencing significant amounts of pain or when knee functionality has become substantially degraded. Despite impressive recent developments, only about 85% of patients are satisfied with the pain reduction after one year. Therefore, structural health and performance monitoring are integral for intraoperative and postoperative feedback. In extension of the author's previous work, a new configuration for implementation of piezoelectric transducers in total knee replacement bearings is proposed and FEA modeling is performed to attain appropriate sensing and energy harvesting ability. The predicted force transmission ratio to the PZT (ratio of force applied to the bearing to force transferred to the embedded piezoelectric transducer) is about 6.2% compared to about 5% found for the previous encapsulated design. Dimensional parameters of the polyethylene bearing including the diameter and depth of the PZT pocket as well as the placement geometry of the PZT transducer within the bearing are hypothesized as the most influential parameters on the performance of the designed system. The results show a small change of 1% and 2.3% in the output of the system as a result of variation in the PZT location and pocket diameter, respectively. Whereas, the output of the system is significantly sensitive to the pocket depth; a pocket 0.01 mm deeper than the PZT transducer leads to no force transmission, and a pocket 0.15 mm shallower leads to full load transmission to the PZT. In order to develop a self-powered sensor, the amount of energy harvested from tibial forces for the proposed geometry is investigated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.