Photodynamic therapy with aminolevulinic acid and blue light is used in Europe for basal cell carcinoma (BCC), but not in the United States due to uncertainties about efficacy. To potentially improve treatment outcomes and make PDT a more attractive as therapy for BCC, we conducted a prospective, double-blind, crossover clinical trial to test whether pretreatment with oral Vitamin D may enhance BCC responses to blue light PDT. Three separate PDT sessions were administered, with patients receiving daily doses of Vitamin D (10,000 units) or placebo for a week prior to PDT. We will report here on interim clinical trial outcomes.
PDT has become a treatment of choice especially for the cases with multiple sites and large areas. However, the efficacy
of PDT is limited for thicker and deeper tumors. Depth and size information as well as vascularity can provide useful
information to clinicians for planning and evaluating PDT. High-resolution ultrasound and photoacoustic imaging can
provide information regarding skin structure and vascularity. We utilized combined ultrasound-photoacoustic
microscopy for imaging a basal cell carcinoma (BCC) tumor pre-PDT and the results indicate that combined ultrasound-photoacoustic
imaging can be useful tool for PDT planning by providing both structural and functional contrasts.
Photodynamic Therapy (PDT) has proven to be an effective treatment option for nonmelanoma skin cancers. The ability
to quantify the concentration of drug in the treated area is crucial for effective treatment planning as well as predicting
outcomes. We utilized spatial frequency domain imaging for quantifying the accurate concentration of protoporphyrin IX
(PpIX) in phantoms and in vivo. We correct fluorescence against the effects of native tissue absorption and scattering
parameters. First we quantified the absorption and scattering of the tissue non-invasively. Then, we corrected raw
fluorescence signal by compensating for optical properties to get the absolute drug concentration. After phantom
experiments, we used basal cell carcinoma (BCC) model in Gli mice to determine optical properties and drug
concentration in vivo at pre-PDT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.