A starshade enables direct imaging of Earth-like exoplanets in the habitable zone of nearby stars by suppressing light from a target star so that orbiting planets are revealed. The perimeter of a starshade, known as the optical edge, has two critical functions. First, it must meet a precise in-plane profile specification to form a deep shadow in which the telescope is placed. Second, it must minimize reflected sunlight, as scattered sunlight significantly degrades the achievable contrast. Prior work on small scales and in a laboratory environment has shown that these requirements can be met using a chemically etched amorphous metal foil. This paper describes the next step of development, a first ever demonstration of assembled optical edge segments that meet both requirements simultaneously. The segments were constructed using space-compatible components and tested to relevant thermal and mechanical environments. A thorough assessment of edge performance, including in-plane profile, sunlight scatter and mechanical survivability was performed both before and after environmental testing. Furthermore, a custom scattered light testbed has been developed to quantify the magnitude of scattered sunlight over the entire length of the optical edge. The results of this study inform the future development of optical edge technology and pave the way towards eventual flight implementation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.