The COronal Diagnostic EXperiment (CODEX) is the solar coronagraph developed by NASA-Goddard Space Flight Center in collaboration with the Korea Astronomy and Space Science Institute (KASI), and the Italian National Institute for Astrophysics (INAF). CODEX will be launched in September 2024 and will be hosted by the International Space Station (ISS) as an external payload. CODEX is designed to observe the linearly polarized K-corona within the wavelength range 385-440 nm to obtain simultaneous measurements of density, temperature, and radial velocity of the coronal electrons. CODEX is a two-stage externally occulted coronagraph, with a field of view of 2.67 degrees, featuring two fold mirrors, and a series of occulting elements that minimize the amount of diffracted light reaching the detector. The polarization of the solar corona is measured by means of a commercial polarization image sensor manufactured by Sony, the IMX253MZR, that spatially modulates the incoming light beam. The polarimetric characterization of the instrument is one of the fundamental steps to derive the desired physical quantities of the solar corona from observations. It is hence crucial to understand how the instrument modifies the incident polarized light, especially due to the presence of the two fold mirror system within the light path, which is notoriously a source of polarization aberrations. This work describes the polarimetric characterization of the CODEX coronagraph, to determine an estimation of the instrumental polarization, and the results are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.