Modern IoT and 5G applications are driving the growth of Internet traffic and impose stringent requirements to datacenter operators for keeping pace with the increasing bandwidth and low-latency demands. At the same time, datacenters suffer from increasing number of interconnections dictating the deployment of novel architectures and high-radix switches. The ratification of 400 GbE standard is driving the market of optical transceivers nevertheless, a technology upgrade will be soon necessary to meet the tremendous traffic growth. In this paper, we present the development of 800 Gb/s and 1Tb/s optical transceivers migrating to 100 Gbaud per lane and employing wafer-scale bonding of InP membranes and InP-DHBT electronics as well as advanced co-packaging schemes. The InP membrane platform is also exploited for the development of novel ultra-fast optical space switches based on a modular architecture design for scaling to large number of I/O ports.
We present a scalable and novel modular optical metro core node architecture employing photonic WDM integrated switches. Multi-degree switching ROADM nodes are used at the metro-core level, while access network is constituted by low-cost ROADM nodes. Photonic integrated switches have been designed as the building blocks to realize this modular metro node architectures, namely photonic WDM space switches with express and add/drop ports, photonic integrated WSS aggregation/disaggregation functions for merging/dropping the network traffic, and photonic integrated multi-cast switch (MCS), to achieve, together with bandwidth variable transceivers aggregators, multi-Terabits/second operation per link. In particular, photonic WDM space switches and photonic integrated WSS are designed as building blocks to realize this novel modular metro node architectures. Moreover, dynamic re-configurable metro-access nodes based on low-cost photonic integrated mini-ROADMs will be presented. The lossless photonic WDM switches are based on InP technology and employ semiconductor optical amplifiers as on-chip gain element and for fast switching. The photonic WDM circuits allow to switch multiple format data signals in wavelength, space and time for full flexibility, scalability of the interconnected network elements, as well as capacity. Applications will be discussed and experimental results will be reported. Finally advances in compact photonic integrated InP switch design using the InP generic technology will be discussed.
Boosted by novel applications, to satisfy the scalable growth in both network traffic volume and connected endpoints while decreasing the cost and the energy consumption, transparent optical metro edge nodes and DC networks (DCNs) based on fast optical switches have been considered, featuring the data rate and format transparency and eliminating the power consuming O/E/O conversions. We present novel WDM photonic integrated switches with nanoseconds reconfiguration time and polarization independent operation. The WDM photonic integrated switches are capable to switching in the wavelength, space, and nanoseconds time domain to provide full flexibility and the required speed to achieve high throughput networks. Application to dynamic optical metro networks and optical DCN architectures based on distributed nanoseconds WDM photonics integrated switches will be presented.
An SDN reconfigurable metro-access network based on modular photonic integrated ROADM nodes with edgecomputing for beyond 5G application is demonstrated. Multi-degree switching ROADM nodes are used at the metrocore level, while access network is constituted by low-cost 2-degree ROADM nodes. Network scalability per node is met via a modular design where new modules are added in a pay-as-you grow manner to meet capacity demands. We present PIC for wavelength selective switches used in the metro-core network. Two distinct integration approaches i.e. monolithic on InP and hybrid integration of SiPh with InP are followed to enable low loss switching.
With the aim to satisfy the scalable growth in both network traffic volume and connected endpoints while decreasing the cost and the energy consumption, transparent optical DC networks (DCNs) based on fast optical switches have been considered, featuring the data rate and format transparency and eliminating the power consuming O/E/O conversions. In this work, we propose and experimentally assess novel optical DCN architectures based on distributed and buffer-less nanoseconds WDM photonics integrated switches. The WDM photonic integrated switches are capable to switching in the wavelength, space, and nanoseconds time domain to provide full flexibility and the required speed to achieve high throughput DCN networks. Disaggregated DCN architectures enabled by the fast WDM PIC switch will be also presented.
This article provides insight on two of the most relevant applications driving the design of the future MAN: the implementation of 5G by means of C-RAN (Cloud - Radio Area Network) and the deployment of edge computing. The work addresses important questions such as the target latency budget for future MANs, the target bandwidth requirements for 2020-2030 induced by 5G midhaul and fronthaul traffic, and describes how optical and electronics layers can co-operate to meet the QoS targets of C-RAN and edge computing traffic. In the process, we identify the key architectural elements to meet the challenges of these applications in a cost-effective way.
Innovative photonic solutions designed and developed in the H2020 research project PASSION are presented for the future metropolitan area network (MAN) supporting different aggregated data traffic volumes and operating at heterogenous granularities. System performance evaluated both by simulations and experimentation regarding the proposed vertical cavity surface emitting laser (VCSEL) -based modular sliceable bandwidth/bitrate variable transceiver (S-BVT) are shown in realistic MANs organized by hierarchical levels with the crossing of multiple nodes characterized by new switching/aggregation technologies. The capabilities and challenges of the proposed cost-effective, energy-efficient and reduced footprint technological solutions will be demonstrated to face the request of huge throughput and traffic scalability.
We present a scalable and novel modular optical metro core node architecture and low cost metro access node architectures with edge computing functionalities employing photonic WDM integrated switches. Photonic integrated switches has been des igned as the building blocks to realize the modular metro node architectures, namely photonic WDM switches with express and add/drop ports, photonic integrated WSS aggregation/disaggregation functions for merging/dropping the network traffic, and photonic integrated multi-cast switch (MCS), as well as bandwidth variable transceivers aggregators to achieve multi-Terabits/second operation. Moreover, a dynamic re-configurable metro-access nodes based on low-cost 2-degree photonic integrated mini-ROADMs will be discussed. The lossless photonic WDM switches are based on InP technology and employ semiconductor optical amplifiers as on -chip gain element and fast switch. The photonic WDM circuits allows to switch multiple format data signals in wavelength, space, and time for full flexibility, scalability of the interconnected network elements as well as capacity. Applications to data center interconnects and 5G will be discussed and experimental results reported.
Many high performance computers (HPC) and cloud computing applications rely on distributing tasks among large numbers of virtual and real servers. This implies that advancements in performance of data centers and HPCs is increasingly dependent on connectivity. In order to insure high degree of connectivity at increasing bit rates and distances the demand for large bandwidth-distance product connections is increasing. These can almost exclusively be provided using optical interconnects. Traditionally optical-interconnect come in the form of pluggable transceivers. However the increases in number of connections and bit-rate poses a limit to further scaling (the front-plate bottleneck). A shift towards mid-board optics is in the making but requires solutions which are compact, power efficient and low cost for manufacturing. In this talk we will present our most recent demonstrations of high density optical interconnect solutions as well as high density switches. First some details about the design aspects and advantages of compact electronic switches employing mid-board optical engines will be discussed. Then, for addressing the challenge of low cost optical interconnects, we will give details on our recent work targeting high channel count VCSELs based sub-modules. Results based on 2.5D and 3D assembly on high resistivity silicon will be discussed as well as the use of direct die attach to flexible PCBs for making high density interconnects.
Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.
In this paper we report the design, fabrication, simulation and characterization of a novel discretely
tunable laser based on filtered feedback. This Integrated Filtered-Feedback Tunable Laser (IFF-TL) device
combines a simple and robust switching algorithm with good wavelength stability. It consists of a Fabry-Perot
laser with deeply-etched broadband DBR mirrors. Single mode operation is achieved by using feedback from an
integrated filter. This filter contains an AWG wavelength router and an SOA gate array. A rate equation model
predicts that a properly designed device can switch within 1 ns, while characterization measurements show a
value of only 4 ns. The fast switching and reduced control complexity makes the device very promising for various
advanced applications in optical telecommunication networks.
KEYWORDS: Switches, Signal processing, Switching, Integrated optics, Optical switching, Fiber Bragg gratings, Eye, All optical signal processing, System integration, Optical signal processing
In this paper two different paradigms to realize a scalable
all-optical packet switch with label swapping will be reviewed.
All the functions required for switching the packets are based on
all-optical signal processing without any electronic
control. This allows very low latency and potential photonic integration of the systems. We report for both techniques
experimental results showing the routing operation of the 160 Gb/s packets and beyond. We will discuss and compare
both techniques in term of devices and bit-rate scalability, latency, power consumption, power penalty performance and
cascadability as key parameters for the realization of an all-optical packet switch.
We discuss how all-optical signal processing might play a role in future all-optical packet switched networks. We introduce a concept of optical packet switches that employ entirely all-optical signal processing technology. The optical packet switch is made out of three functional blocks: the optical header processing block, the optical memory block and the wavelength conversion block. The operation principle of the optical packet switch is explained. We show that these three functional blocks can be realized by using the nonlinearities of semiconductor optical amplifiers. Some technologies in these three functional blocks are described. The header processor is realized using a Terahertz Optical Asymmetric Demultiplexer. We also describe a header pre-processor to improve the extinction ratio of the header processor output. In the optical memory block, we show that an all-optical memory can be obtained by using two coupled lasers that form a master-slave configuration. The state of the optical memory is distinguished by the wavelength of the master laser. We extend the concept to an optical memory can have multiple states. In the wavelength conversion block, we demonstrate a 160 Gbit/s wavelength conversion using a single semiconductor optical amplifier in combination with a well-designed optical bandpass filter. The semiconductor optical amplifier has a gain recovery time
greater than 90 ps, which corresponds to a less than 20 GHz bandwidth for conventional wavelength conversion. We show that by properly using the optical bandpass filter, ultrafast dynamics in the semiconductor optical amplifier can be employed for wavelength conversion at ultrahigh bit-rates.
We discuss how all-optical signal processing might play a role in future all-optical packet switched networks. We describe a few approaches to optical header processing, all based on nonlinearities in a semiconductor optical amplifier. In first approach a SLALOM configuration is used. The second approach uses a Terahertz Optical Asymmetric Demultiplexer. We also describe a header pre-processor to improve the extinction ratio of the header processor output. The second functional block on which we focus is optical buffering. We show how all-optical signal processing technology can be used to route a packet into a fiber delay line and we describe a circulating optical loop based op optical technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.