Spatial light interference microscopy (SLIM) is the optical method for visualization cell structure and measurement its dynamics. The distinctive feature of SLIM technique is introducing the additional spatial phase modulation of optical field in system of phase contrast microscope. In the currently known optical schemes of phase microscope the additional phase modulation is created by the liquid crystal spatial phase modulator (LCPM). It produces the phase shifts to the π/2, introducing the phase contrast between undiffracted and diffracted light from the sample. In our work we use the Michelson interferometer type optical system for introducing the phase delay between two waves. The phase shift is produced by micro displacement of one of the mirrors of the interferometer with the help of the piezoelectric element. Such modification allows setting the path difference of fraction of the wavelength between the undiffracted and diffracted components of the optical field, so it’s possible to get quantitative phase image of the object. This modernization of standard scheme of SLIM improves its performance due to higher speed of piezoelectric element comparing with speed of LCPM. The quality of result images of the investigated object depend on technical parameters of the optical scheme of microscope, including the size of illumination system aperture diaphragm. The purpose of this work is to investigate the influence of the aperture diaphragm on the phase image quality of RBC, which will be used further for the measurement RBC parameters and its dynamics.
The burning issue in modern medicine is the diagnosis and treatment of various life-threatening diseases, in particular the diseases of brain. One of them is intracranial hemorrhage (ICH). It occurs especially among newborn babies and is hard-diagnosed. In order to understand the nature of the ICH, the microcirculation of blood, which serves key functions within the body, is analyzed. On this basis a series of experiments was done, in the results of which it was showed, that latent stage of ICH is characterized by decrease of venous blood outflow and the loss of sensitivity of sagittal vein to vasoconstrictor effect of adrenaline. So, stress-related changes of the cerebral venous blood flow (CVBF) can be the source of this disease. In this paper registration CVBF was made with the help of commercially available Thorlabs Swept Source OCT System, using the correlation mapping method. In this method values of correlation coefficient of several images are analyzed. In the result of the algorithm the correlation map was obtained. By the resulting map the diameter of vessels was calculated, which is necessary for examination of effects of adrenalin to the vessels and identification symptoms of ICH.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.