We propose the application of Compressed Sensing to Computational Scattered Light Imaging to decrease measurement time and data storage. Computational Scattered Light Imaging (ComSLI) determines three-dimensional fiber orientations and crossings in biomedical tissues like brain tissue. Currently, conventional ComSLI is time-consuming and generates large data. Compressed Sensing reconstructs signals with fewer samples than required by the Shannon-Nyquist theorem with minimal perceptual loss, significantly reducing the number of measurements. We introduce an optimized illumination strategy for ComSLI based on the Discrete Cosine Transform and validate it by reconstructing characteristic scattering patterns in vervet brain tissue, thereby demonstrating the feasibility of Compressed Sensing in ComSLI.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.