MATISSE is the mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This second generation interferometry instrument will open new avenues in the exploration of our Universe. Mid-infrared interferometry with MATISSE will allow significant advances in various fundamental research fields: studies of disks around young stellar objects where planets form and evolve, surface structures and mass loss of stars in late evolutionary stages, and the environments of black holes in active galactic nuclei. MATISSE is a unique instrument. As a first breakthrough it will enlarge the spectral domain used by optical interferometry by offering the L & M bands in addition to the N band, opening a wide wavelength domain, ranging from 2.8 to 13 μm on angular scales of 3 mas (L/M band) / 10 mas (N band). As a second breakthrough, it will allow mid-infrared imaging – closure-phase aperture-synthesis imaging – with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. MATISSE will offer various ranges of spectral resolution between R~30 to ~5000. In this article, we present some of the main science objectives that have driven the instrument design. We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performance and discuss the project status. The operations concept will be detailed in a more specific future article, illustrating the observing templates operating the instrument, the data reduction and analysis, and the image reconstruction software.
Current interferometers often collect data simultaneously in many spectral channels by using dispersed fringes. Such polychromatic data provide powerful insights in various physical properties, where the observed objects show particular spectral features. Furthermore, one can measure spectral differential visibilities that do not directly depend on any calibration by a reference star. But such observations may be sensitive to instrumental artifacts that must be taken into account in order to fully exploit the polychromatic information of interferometric data. As a specimen, we consider here an observation of P Cygni with the VEGA visible combiner on CHARA interferometer. Indeed, although P Cygni is particularly well modeled by the radiative transfer code CMFGEN, we observe questionable discrepancies between expected and actual interferometric data. The problem is to determine their origin and disentangle possible instrumental effects from the astrophysical information. By using an expanded model fitting, which includes several instrumental features, we show that the differential visibilities are well explained by instrumental effects that could be otherwise attributed to the object. Although this approach leads to more reliable results, it assumes a fit specific to a particular instrument, and makes it more difficult to develop a generic model fitting independent of any instrument.
We report on a database service that allows users to query calibrated optical interferometry data (OIFITS format) as well as regularly-updated observation logs obtained with a wide range of interferometric instruments. It widely uses Virtual Observatory tools to increase diffusion and operability. In this contribution, we present the characteristics and functionalities of the first global optical interferometry archive service.
Observing reference stars with a known diameter is almost the only possibility to calibrate optical interferometry observations. The JMMC Calibrator Workgroup develops methods to ascertain the angular diameter of stars since 2000 and provides this expertise in the SearchCal software and associated databases. We provide on a regularly basis the JSDC, a catalogue of such stars, and an open access to our server that dynamically finds calibrators near science objects by querying CDS hosted catalogs. Here we propose a novel approach in the estimation of angular stellar diameters based on observational quantities only. It bypasses the knowledge of the visual extinction and intrinsic colors, thanks to the use of absorption free pseudo-colors (AFC) and the spectral type number on the x-axis. This new methodology allows to compute the angular diameter of 443 703 stars with a relative precision of about 1%. This calibrator set will become after filtering the next JSDC release.
In the next 2 or 3 years, the two major interferometric arrays, VLTI and CHARA, will equip their telescopes of 1.8m and 1m respectively with Adaptive Optics (AO hereafter) systems. This improvement will permit to apply with a reasonable e_ciency in the visible domain, the principle of spatial filtering with single mode fibers demonstrated in the near-infrared. It will clearly open new astrophysical fields by taking benefit of an improved sensitivity and state-of-the-art precision and accuracy on interferometric observables. To prepare this future possibility, we started the development of a demonstrator called FRIEND (Fibered and spectrally Resolved Interferometric Experiment - New Design). FRIEND combines the beams coming from 3 telescopes after injection in single mode optical fibers and provides some spectral capabilities for characterization purposes as well as photometric channels. It operates in the R spectral band (from 600nm to 750nm) and uses the world's fastest and more sensitive analogic detector OCAM2. Tests on sky at the focus of the CHARA interferometer are scheduled for December 2014. In this paper, we present the first interferometric tests of the OCAM2 detector performed on CHARA in November 2012 and the concept, the expected performance and the opto-mechanical design of FRIEND.
This poster advertizes the Jean-Marie Mariotti Center software tools, databases and services aimed at facilitating the use of optical interferometry worldwide such as preparation of observations, data reduction and data analysis. Its mission and organization are presented before listing the current software suite. Finally some facts and perspectives are mentioned.
MATISSE is a mid-infrared spectro-interferometer combining the beams of up to four Unit Telescopes or Auxiliary
Telescopes of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory.
MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI. New characteristics present in
MATISSE will give access to the mapping and the distribution of the material, the gas and essentially the dust, in the
circumstellar environments by using the mid-infrared band coverage extended to L, M and N spectral bands. The four
beam combination of MATISSE provides an efficient uv-coverage: 6 visibility points are measured in one set and 4
closure phase relations which can provide aperture synthesis images in the mid-infrared spectral regime.
We give an overview of the instrument including the expected performances and a view of the Science Case. We present
how the instrument would be operated. The project involves the collaborations of several agencies and institutes: the
Observatoire de la Côte d’Azur of Nice and the INSU-CNRS in Paris, the Max Planck Institut für Astronomie of
Heidelberg; the University of Leiden and the NOVA-ASTRON Institute of Dwingeloo, the Max Planck Institut für
Radioastronomie of Bonn, the Institut für Theoretische Physik und Astrophysik of Kiel, the Vienna University and the
Konkoly Observatory.
The JMMC1 Calibrator Workgroup has long developed methods to ascertain the angular diameter of stars, and provides
this expertise in the SearchCal2 software. SearchCal dynamically finds calibrators near science objects by querying CDS3
hosted catalogs according to observational parameters. Initially limited to bright objects (K magnitude ≤ 5.5), it has been
upgraded with a new method providing calibrators without any magnitude limit but those of queried catalogs. We
introduce here a new static catalog of stellar diameters, containing more than 38000 entries, obtained from SearchCal
results aggregation on the whole celestial sphere, complete for all stars with HIPPARCOS4 parallaxes. We detail the
methods and tools used to produce and study this catalog, and compare the static catalog approach with the dynamical
querying provided by SearchCal engine. We also introduce a new Virtual Observatory service, enabling the reporting of,
and querying about, stars flagged as "bad calibrators" by astronomers, adding this ever-growing database to our
SearchCal service.
KEYWORDS: Telescopes, High dynamic range imaging, Imaging systems, Single mode fibers, Adaptive optics, Range imaging, Stars, Observatories, Space telescopes, Wavefronts
We present the laboratory demonstration of a very high-dynamic range imaging instrument FIRST (Fibered Imager foR
Single Telescope). FIRST combines the techniques for aperture masking and a single-mode fiber interferometer to
correct wavefront errors, which leads to a very high-dynamic range up to 106 around very near the central object (~ λ/D)
at visible to near-infrared wavelengths. Our laboratory experiments successfully demonstrated that the original image
can be reconstructed through a pupil remapping system. A first on-sky test will be performed at the Lick Observatory 3-
m Shane telescope for operational tests in the summer of 2010.
This paper presents the current status of the VEGA (Visible spEctroGraph and polArimeter) instrument installed
at the coherent focus of the CHARA Array, Mount Wilson CA. Installed in september 2007, the first science
programs have started during summer 2008 and first science results are now published. Dedicated to high angular (0.3mas) and high spectral (R=30000) astrophysical studies, VEGA main objectives are the study of circumstellar environments of hot active stars or interactive binary systems and a large palette of new programs dedicated to fundamental stellar parameters. We will present successively the main characteristics of the instrument and its current performances in the CHARA environment, a short summary of two science programs and finally we will develop some studies showing the potential and difficulties of the 3 telescopes mode of VEGA/CHARA.
We present the work developed within the science team of the Very Large Telescope Interferometer Spectro-Imager (VSI) during the Phase A studies. VSI aims at delivering ~ 1 milliarcsecond resolution data cubes
in the near-infrared, with several spectral resolutions up to 12 000, by combining up to 8 VLTI telescopes. In
the design of an instrument, the science case plays a central role by supporting the instrument construction
decision, defining the top-level requirements and balancing design options. The overall science philosophy of
VSI was that of a general user instrument serving a broad community. The science team addressed themes
which included several areas of astrophysics and illustrated specific modes of operation of the instrument: a)
YSO disks and winds; b) Multiplicity of young stars; c) Exoplanets; d) Debris disks; e) Stellar surface imaging;
f) The environments of evolved stars; g) AGN tori; h) AGN's Broad Line Region; i) Supermassive black-holes;
and j) Microlensing. The main conclusions can be summarized as follows: a) The accessible targets and related
science are extremely sensitive to the instrument limiting magnitude; the instrument should be optimized for
sensitivity and have its own fringe tracker. b) Most of the science cases are readily achievable with on-axis fringe
tracking, off-axis fringe tracking enabling extra science. c) In most targets (YSOs, evolved stars and AGNs), the
interpretation and analysis of circumstellar/nuclear dust morphology requires direct access to the gas via spectral
resolved studies of emission lines, requiring at least a spectral resolution of 2 500. d) To routinely deliver images
at the required sensitivity, the number of telescopes in determinant, with 6 telescopes being favored. e) The
factorial increase in the number of closure phases and visibilities, gained in a single observation, makes massive
surveys of parameters and related science for the first time possible. f) High dynamic range imaging and very
high dynamic range differential closure phase are possible allowing the study of debris disks and characterization
of pegasides. g) Spectro-imaging in the near-infrared is highly complementary to ALMA, adaptive optics and
interferometric imaging in the thermal infrared.
Massive stars deeply influence their surroundings by their luminosity and the injection of kinetic energy. So
far, they have mostly been studied with spatially unresolved observations, although evidence of geometrical
complexity of their wind are numerous. Interferometry can provide spatially resolved observations of massive
stars and their immediate vicinity. Specific geometries (disks, jets, latitude-dependent winds) can be probed by
this technique.
The first observation of a Wolf-Rayet (WR) star (γ2 Vel) with the AMBER/VLTI instrument yielded to a
re-evaluation of its distance and an improved characterization of the stellar components, from a very limited
data-set. This motivated our team to increase the number of WR targets observed with AMBER. We present
here new preliminary results that encompass several spectral types, ranging from early WN to evolved dusty
WC.
We present unpublished data on WR79a, a massive star probably at the boundary between the O and Wolf-Rayet type, evidencing some
Wolf-Rayet broad emission lines from an optically thin wind. We also present new data obtained on γ2 Vel that can be compared to the up-to-date interferometry-based orbital parameters from North et al. (2007). We discuss the presence of a wind-wind collision zone in the system and provide preliminary analysis suggesting the presence of such a structure in the data. Then, we present data obtained on 2 dusty Wolf-Rayet stars: WR48a-b and WR118, the latter exhibiting some clues of a pinwheel-like structure from the
visibility variations.
KEYWORDS: Telescopes, Stars, Spectral resolution, Spatial resolution, Interferometry, Integrated optics, Space telescopes, Visibility, Image restoration, Signal to noise ratio
The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer
providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions
down to 1.1 milliarcsecond and spectral resolutions up to R = 12000. Targets as faint as K = 13 will be imaged
without requiring a brighter nearby reference object; fainter targets can be accessed if a suitable reference is
available. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral
resolution enables a scientific program which serves a broad user community and at the same time provides the
opportunity for breakthroughs in many areas of astrophysics. The high level specifications of the instrument are
derived from a detailed science case based on the capability to obtain, for the first time, milliarcsecond-resolution
images of a wide range of targets including: probing the initial conditions for planet formation in the AU-scale
environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping
the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities
using technologies which have been extensively tested in the past and VSI requires little in terms of new
infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it
becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through
the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies
are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own
fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize
the scientific return.
MATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very
Large Telescope Interferometer (VLTI) of the European Southern Observatory. The related science case study
demonstrates the enormous capability of a new generation mid-infrared beam combiner.
MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI. MIDI is a very successful
instrument which offers a perfect combination of spectral and angular resolution. New characteristics present in
MATISSE will give access to the mapping and the distribution of the material (typically dust) in the circumstellar
environments by using a wide mid-infrared band coverage extended to L, M and N spectral bands. The four beam
combination of MATISSE provides an efficient UV-coverage : 6 visibility points are measured in one set and 4 closure
phase relations which can provide aperture synthesis images in the mid-infrared spectral regime.
LITpro is a software for fitting models on data obtained from various stellar optical interferometers, like the VLTI. As a
baseline, for modeling the object, it provides a set of elementary geometrical and center-to-limb darkening functions, all
combinable together. But it is also designed to make very easy the implementation of more specific models with their
own parameters, to be able to use models closer to astrophysical considerations. So LITpro only requires the modeling
functions to compute the Fourier transform of the object at given spatial frequencies, and wavelengths and time if needed.
From this, LITpro computes all the necessary quantities as needed (e.g. visibilities, spectral energy distribution, partial
derivatives of the model, map of the object model). The fitting engine, especially designed for this kind of optimization, is
based on a modified Levenberg-Marquardt algorithm and has been successfully tested on real data in a prototype version.
It includes a Trust Region Method, minimizing a heterogeneous non-linear and non-convex criterion and allows the user
to set boundaries on free parameters. From a robust local minimization algorithm and a starting points strategy, a global
optimization solution is effectively achieved. Tools have been developped to help users to find the global minimum. LITpro
is also designed for performing fitting on heterogeneous data. It will be shown, on an example, how it fits simultaneously
interferometric data and spectral energy distribution, with some benefits on the reliability of the solution and a better
estimation of errors and correlations on the parameters. That is indeed necessary since present interferometric data are
generally multi-wavelengths.
The VEGA spectrograph and polarimeter has been recently integrated on the visible beams of the CHARA
Array. With a spectral resolution up to 35000 and thanks to operation at visible wavelengths, VEGA brings
unique capabilities in terms of spatial and spectral resolution to the CHARA Array. We will present the main
characteristics of VEGA on CHARA, some results concerning the performance and a preliminary analysis of the
first science run.
We present interferometric near-infrared observations of the Luminous Blue Variable (LBV) η Car using the
Very Large Telescope Interferometer (VLTI) and the AMBER instrument of the European Southern Observatory
(ESO). A high spatial resolution of 5 mas (~11.5 AU) and a high spectral resolution R = λ/Δλ=1500 and
12000 were obtained. Some of the data was recorded using the fringe tracker FINITO. The observations were
obtained in the wavelength range around both the He I 2.059 μm and the Brγ 2.166 μm emission lines. The
AMBER interferograms allow the investigation of the wavelength dependence of η Car's visibility, wavelength-differential phase, and closure phase. If we fit Hillier et al. model visibilities to the observations, we obtain
50% encircled-energy diameters of 4.2, 6.5 and 9.6 mas in the 2.17 μm continuum, the He I, and the Brγ emission
lines, respectively. In the continuum, an elongation along a position angle of 120° ± 15° was derived from the
visibilities. The VLTI observations support theoretical models of anisotropic winds from fast-rotating, luminous
hot stars with enhanced high-velocity mass loss near the pole.
The VLTI is a breakthrough for its capabilities to hunt and study asymmetrical circumstillar environments encountered
in many targets experiencing large mass-loss rate. These environements provide important information
on the perturbations of the wind carrying the mass and momentum lost by the evolved source. These perturbations
are often due to companions, the short or long term interactions of the dying star with a companion
encompassing a large diversity of situations, including giant planets. The VLTI is also well-suited to investigate
the spatial and spectral developments of transient, explosive phenomena like Novae and some recent results on
that subject will be presented.
KEYWORDS: High dynamic range imaging, Range imaging, Telescopes, Astronomy, Point spread functions, Visibility, Diffraction, Imaging systems, Exoplanets, Prototyping
We describe the present status of the development of a very high-dynamic range, diffraction limited imaging instrument FIRST (Fibered Imager foR Single Telescope), among which goals is the detection of nearby extra-solar planets at visible to near-infrared wavelengths from the ground. We have started to develop a prototype system which consists of a number of novel designs such as a segmented micro mirror array and silicon micro machined single-mode fiber arrays. Furthermore, we have proposed to build a FIRST instrument for the CFHT, which will be complementary to high-dynamic range instruments developed for 8m class telescopes at near-infrared wavelengths.
We present the first interferometric NIR observations of the LBV η Carinae with high spectral resolution. The observations were carried out with three 8.2 m VLTI Unit Telescopes in the K-band. The raw data are spectrally dispersed interferograms obtained with spectral resolutions of 1,500 (MR-K mode) and 12,000 (HR-K mode). The observations were performed in the wavelength range around both the He I 2.059 μm and the Brγ 2.166 μm emission lines. The spectrally dispersed AMBER interferograms allow the investigation of the wavelength dependence of the visibility, differential phase, and closure phase of η Car. In the K-band continuum, a diameter of 4.0±0.2 mas (Gaussian FWHM) was measured for η Car's optically thick wind region, whereas the Brγ and He I emission line regions are larger. If we fit Hillier et al. model visibilities to the observed AMBER visibilities, we obtain 50% encircled-energy diameters of 4.3, 6.5 and 9.6 mas in the 2.17 μm continuum, the He I, and the Brγemission lines, respectively. In the continuum near the Brγ line, an elongation along a position angle of 128° ± 15° was found, consistent with previous VLTI/VINCI measurements. We find good agreement between the measured visibilities and the predictions of the radiative transfer model of Hillier et al. For the interpretation of the non-zero differential and closure phases measured within the Brγ line, we present a simple geometric model of an inclined, latitude-dependent wind zone. Our observations support theoretical models of anisotropic winds from fast-rotating, luminous hot stars with enhanced high-velocity mass loss near the polar regions.
We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Five different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formatted in the OI-FITS format. The data are calibrated power spectra and bispectra measured with an array intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.
After two years of official operation as a facility instrument on the Very Large Telescope Interferometer (VLTI)
the MID-infrared Interferometric instrument (MIDI) has provided a great wealth of new results. The number of
AGNs observed and the diversity of targets requested for observations are beyond expectations and illustrate the
success of the instrument concept. We will outline the scientific issues recently addressed by MIDI and present
briefly the potential ones.
Our objective is the development of mid-infrared imaging at the VLTI. The related science case study demonstrates the enormous capability of a new generation mid-infrared beam combiner. MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI by increasing the number of recombined beams up to four. MIDI is a very successful instrument which offers a perfect combination of spectral and angular resolution. New characteristics present in MATISSE will give access to the mapping and the distribution of the material (typically dust) in the circumstellar environments by using a wide mid-infrared band coverage extended to L, M, N and Q spectral bands. The four beam combination of MATISSE provides an efficient UV-coverage: 6 visibility points are measured in one set and 4 closure phase relations which can provide for the first time aperture synthesis images in the mid-infrared spectral regime. The mid-infrared spectral domain is very relevant for the study of the environment of various astrophysical sources. Our science case studies show the wide field of applications of MATISSE. They will be illustrated in the first part of this presentation through the perspective of imaging the circumstellar environments/discs of young stellar objects. The MATISSE characteristics will be given in a second part of the presentation.
This document shows the first results of the study of the environment of the S star T Sagittarii. Observational constraints are obtained through 10 μm long baseline interferometry with MIDI at the VLTI. Models of the dust envelope are simulated with a monte-carlo radiative transfer code.
We are studying an optical concept aiming at recombining four mid-infrared telescope beams, where interference fringes are sampled in the pupil plane. Such a principle is perfectly adapted for reconstructing images by aperture synthesis with teh VLTI. It could be used for building a new generation 10 μm instrument, but instead of doing a totally new instrument, we propose the design of an optical module that can supply the surrent MIDI-VLTI instrument with 4 beams. The combined use of this module together with the MIDI instrument is the project called APreS-MIDI. Such an instrument at the VLTI focus will have an unique and very strong astrophysical potential.
APreS-MIDI (APerture Synthesis in the MID-Infrared) instrument function is to recombine 4 telescope beams of the VLTI. Interference fringes are sampled in the pupil plane. The optical principle uses "image densification". It is perfectly adapted for reconstructing images by aperture synthesis at 10mm. This principle could be used for building a new generation 10mm instrument, but instead of making a totally new instrument, we propose the design of an optical module that can supply the current MIDI-VLTI instrument with 4 beams.
The first science instrument for the Very Large Telescope Interferometer (VLTI), the Mid-infrared instrument MIDI, will be commissioned in November 2002 with anticipated first fringe during that commissioning run on the 40-cm Siderostats and the 8.2-meter Unit Telescopes. In this paper we describe scientific and technical observing modes (also referred to as observation procedures) developed for MIDI and discuss in detail how an observing run with the instrument is planned.
MIDI is built by a consortium lead by the Max Planck Institute for Astronomy (MPIA Heidelberg), with contributions from among others ASTRON (Dwingeloo, The Netherlands), Leiden Observatory, University of Amsterdam, Paris Observatory, University of Groningen, the Kiepenheuer-Institut fur Sonnenpysik at Freiburg, Thuringer Landessternwarte Tautenburg, and the Observatoire de la Cote d'Azur.
The mid-infrared interferometric instrument MIDI is currently undergoing testing in preparation for commissioning on the Very Large Telescope Interferometer VLTI at the end of this year 2002. It will perform interferometric observations over the 8 μm - 13 μm wavelength range, with a spatial resolution of 20 milliarcsec, a spectral resolution of up to 250, and an anticipated point source sensitivity of N = 4 mag or 1 Jy for self-fringe tracking, which will be the only observing mode during the first months of operation. We describe the layout of the instrument and the performance during laboratory tests, both for broadband and spectrally resolved observing modes. We also briefly outline the planned guaranteed time observations.
Similarly as the technique of Doppler Imaging from spectroscopic observations, Differential Interferometry makes it possible to
measure the disturbances of photocentroid location of an unresolved star as a function of wavelength and to deduce the corresponding stellar map. We show the imaging potential of a tomographic technique which combines time-resolved spectroscopy and long baseline
interferometry, providing information that cannot be obtained
otherwise with each of these techniques taken at once. In particular, here we consider the example of mapping abundance inhomogeneities, performing numerical experiments with realistic spectral resolutions and signal-to-noise ratios expected for operating (VLTI, GI2T) or close-to-operating long baseline interferometers (Chara, Keck). We show that the accurate maps of stellar surface abundance distribution can be obtained using regularized inversion by Maximum Entropy method. The technique is also applicable to other classes of stellar surface imaging as magnetic field and temperature spots but within the classical instrumental context (without polarimetric device) it can hardly discriminate among different distributions. We discuss the importance of Spectro-Polarimetric Interferometry observations
(Rousselet-Perraut et al., this proceedings) in order to
discriminate and simultaneously map abundance/temperature
inhomogeneities and magnetic fields of chemically peculiar (CP)
stars.
KEYWORDS: Stars, Polarization, Interferometry, Polarimetry, Visibility, Signal detection, Interferometers, Monte Carlo methods, Spherical lenses, Scattering
We describe the prospective work undertaken on an interferometric
technique using polarimetry called SPIN (Spectro-Polarimetric
INterferometry). The polarizing phenomena described in this work have to be taken into account by any stellar interferometer in order to control the fringe signal. Adding a polarimetric device at their combined focus represents no technical difficulty. The use of SPIN can extend interferometry by an important complementary tool for locating and quantizing the mass loss from early type stars since these stars are subject to strong Thomson scattering in their vicinity. As an illustration of the potential of SPIN, we present the results of Monte-Carlo simulations showing the expected signal for realistic hot star environment. Radiative winds ranging from A supergiants to earliest O stars are considered. In particular, the results show the strong expected signal from spherical winds for which no detection of polarization is achievable by classical technics.
Polarimetry is a powerful means for detecting and constraining various physical phenomena, such as scattering processes or magnetic fields, occuring in a large panel of stellar objects: extended atmospheres of hot stars, CP stars, Young Stellar Objects, Active Galaxy Nuclei, ... However, the lack of angular resolution is generally a strong handicap to drastically constrain the physical parameters and the geometry of the polarizing phenomena because of the cancelling of the polarized signal. In fact, even if stellar features are strongly polarized, the (spectro-)polarimetric
signal integrated over the stellar surface rarely exceeds few percents. Coupling polarimetric and interferometric devices allows to resolve these local polarized structures and thus to constrain complex patchy stellar surfaces and/or environments such as disk topology in T Tauri stars, hot stars radiative winds or oscillations in Be star envelopes. In this article, we explain how interfero-polarimetric observables, basically the contrast and the position of the interference fringe patterns versus polarization (and even versus
wavelength) are powerful to address the above scientific drivers and we emphasize on the key point of instrumental and data calibrations: since interferometric measurements are differential ones between 2 or more beams, this strongly relaxes the calibration requirements for the fringe phase observable. Prospects induced by the operation
of the optical aperture synthesis arrays are also discussed.
KEYWORDS: Stars, Calcium, Visibility, K band, Infrared radiation, Interferometers, Temperature metrology, Digital signal processing, Carbon monoxide, Signal processing
We have built an infrared beam combiner for the GI2T/REGAIN interferometer of the Observatoire de la Cote d'Azur. The beam controller allows us to record spectrally dispersed Michelson interference fringes in the near-infrared J-, H- or K-bands. The beam combiner has the advantage that Michelson interferograms can simultaneously be recorded in about 128 different spectral channels. The tilt of the spectrally dispersed fringes is a measure of the instantaneous optical path difference. We present the optical design of the beam combiner and GI2T/REGAIN observations of the Mira star R Cas with this beam combiner in the spectral range of 2.00 micrometers - 2.18 micrometers (observations on 22 and 25 August 1999; variability phase 0.08; V-magnitude approximately 6; seven baselines between 12 m and 24 m; reference stars Vega and (beta) Peg).
After five years of development, the REGAIN project has obtained its first light during summer 1999. The main goals were improving the quality and quantity of data through a complete re-designing and re-building of the central beam combiner. The REGAIN interferometric bonnette delivers two coherent foci, one at visible wavelengths and one in the IR bands (J, H and K). The visible focus is equipped with a dedicated visible spectrograph and two photon counting detectors. The infrared focus can be equipped with different instruments. I will discuss the main technical issues that have been chosen.
Adding a polarimetric device at the combined focus of a stellar interferometer opens new prospects for studying stellar polarization phenomena. Thanks to spatial resolution of long baseline interferometer local polarized structures should become observable unless otherwise undetectable by classical polarimetric techniques. In this paper we present the principles, the observables and the instrumental requirements of polarimetric interferometry. After a short description of earlier attempts to detect polarization effects with optical long baseline interferometry we review the potential applications of this technique once implemented on future optical arrays. We examine the case of scattering phenomena in the extended atmospheres of hot stars (O, B, A) or magnetism of chemically peculiar stars as targets for polarimetric interferometry or its extension SPIN (Spectro-Polarimetric INterferometry). Finally, based on the design of a polarimetric device of GI2T-REGAIN, we currently initiate an observing program which aims at scientific targets such as bright magnetic Ap and Be stars.
This paper reviews the scientific results obtained with the Grand Interferometre a 2 Telescopes (the GI2T interferometer) from 1990 to 1996. During this epoch, accurate spectroscopy coupled to interferometry were achieved on luminous and multiple stars. Subtle structures in circumstellar environments such as: jets in the binary system β Lyrae, dumpiness in the wind of P Cygni, a rotating arm in ζTau have been discovered. Measurements of angular diameter variability versus time and wavelength provide fundamental parameters which constraint δ Cephei and γCas models. In addition to GI2T results, we develop in our group hydrodynamic and radiative transfert models dedicated to the interpretation of interferometry results. These models can directly constrain luminous star physics through their observable parameters.
This paper presents the optical layout of the REGAIN beam combiner including the optical delay line LAROCA with its variable curvature mirror, the field rotator devices, the image and pupil tracking systems and the dedicated visible spectrography. Preliminary studies of foreseen improvements, such as adaptive optics, IR spectrograph and addition of a third telescope, will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.