The Infrared Array Camera (IRAC) on Spitzer Space Telescope includes four Raytheon Vision Systems focal plane arrays, two with InSb detectors, and two with Si:As detectors. A brief comparison of pre- flight laboratory results vs. in-flight performance is given, including quantum efficiency and noise, as well as a discussion of irregular effects, such as residual image performance, "first frame effect", "banding", "column pull-down" and multiplexer bleed. Anomalies not encountered in pre-flight testing, as well as post-flight laboratory tests on these anomalies at the University of Rochester and at NASA Ames using sister parts to the flight arrays, are emphasized.
The Infrared Array Camera (IRAC) is one of three focal plane instruments on board the Spitzer Space Telescope. IRAC is a four-channel camera that obtains simultaneous broad-band images at 3.6, 4.5, 5.8, and 8.0 μm in two nearly adjacent fields of view. We summarize here the in-flight scientific, technical, and operational performance of IRAC.
KEYWORDS: Calibration, Infrared telescopes, High dynamic range imaging, Space telescopes, Stray light, Infrared cameras, Stars, Infrared radiation, Space operations, Telescopes
We describe the astronomical observation template (AOT) for the Infrared Array Camera (IRAC) on the Spitzer Space Telescope (formerly SIRTF, hereafter Spitzer). Commissioning of the AOTs was carried out in the first three months of the Spitzer mission. Strategies for observing fixed and moving targets are described, along with the performance of the AOT in flight. We also outline the operation of the IRAC data reduction pipeline at the Spitzer Science Center (SSC) and describe residual effects in the data due to electronic and optical anomalies in the instrument.
The Spitzer Space Telescope Infrared Array Camera (IRAC) is a four-channel camera that uses two pairs of 256 x 256 pixel InSb and Si:As IBC detectors to provide simultaneous images at 3.6, 4.5, 5.8, and 8 microns. IRAC experiences a flux of cosmic rays that produce transient events in images from each of the arrays, with 5-7 pixels per second being affected in an IRAC integration. The vast majority of these transient events can be adequately characterized so they can be effectively detected and flagged by a pipeline software module. However, because of the nature of the arrays and their arrangement in the camera structure, a small fraction of the cosmic ray hits on IRAC produce transients with unusual morphologies which cannot be characterized in a general way. We present nominal cosmic ray rates observed for IRAC on-orbit and rates observed during a period of elevated solar proton flux following a series of X-class solar flares in late 2003. We also present a guide for observers to help identify unusual transient events in their data. We comment on the physical nature of the production of many o9f these unusual transients and how this mechanism differs from the production of "normal" transient events.
KEYWORDS: Calibration, Data processing, Image processing, Databases, Space operations, Space telescopes, Infrared cameras, Data centers, Infrared telescopes, Data acquisition
IRAC, the Infrared Array Camera on the Spitzer Space Telescope, generated well over 150,000 images during the in-orbit checkout and science verification phase of the mission. All of these were processed with SIP, the SAO IRAC Pipeline. SIP was created by and for the members of the IRAC instrument team at the Smithsonian Astrophysical Observatory, to allow short-timescale data processing and rapid-turnaround software testing and algorithm modification. SIP makes use of perl scripting and data mirroring to transfer and manage data, a mySQL database to select calibration data, and Python/numarray to process the image data; it is designed to run with no user interaction. SIP is fast, flexible, and robust. We present some 'lessons learned' from the construction and maintenance of SIP, and discuss prospects for future improvement.
The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Space Infrared Telescope Facility (SIRTF). IRAC is a four-channel camera that obtains simultaneous images at 3.6, 4.5, 5.8, and 8 microns. Two adjacent 5.12x5.12 arcmin fields of view in the SIRTF focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four detector arrays in the camera are 256x256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. We describe here the results of the instrument functional and calibration tests completed at Ball Aerospace during the integration with the cryogenic telescope assembly, and provide updated estimates of the in-flight sensitivity and performance of IRAC in SIRTF.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.