KEYWORDS: Laser sintering, Receivers, Modulation, Digital signal processing, Signal processing, Telecommunications, Data communications, Signal detection, Absorbance, Active optics
The intensity modulation and direct detection (IM/DD) systems have been widely investigated and demonstrated to fulfil the requirement of short reach data communication links with simple implementation. DMLs are a low cost solution for IM/DD systems due to their low power dissipation, small footprint and high output optical power. However, for DMLs, the driving current can influence the optical density at its active region, hence the intrinsic chirp affects the generated optical carrier and results in distortions of the signals, which reduces transmission rates and signals decision accuracy. We propose a machine learning-based decision technique to mitigate nonlinear distortions of the DMLs without using any nonlinear processing, and demonstrate a 60-Gb/s PAM-8 IM/DD system using a DML. About 0.6-dB receiver sensitivity improvement is achieved after 2km transmission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.