TMT adopts Stressed Mirror Polishing (SMP) technology for the polishing of mirror segments. In this process, the meniscus type spherical shape glass blanks are converted in to a desired aspheric shape by spherical grinding and polishing in the stressed condition. After each grinding and polishing activity metrological measurements are done using different metrology tools. The metrology tool named as 2D-Profilometer is used for low frequency error/foam measurements. It consists of 61 high precision length gauges attached to Carbon Fiber Reinforced Polymer (CFRP) sandwiched Aluminum panel of diameter 1.6 meter in spiral direction. The coefficient of thermal of CFRP is very low however, a small delta temperature variation between the top and bottom sheet of CFRP of the panel will lead to panel bowing which will result in increasing power error. Hence, the objective this work is to analyse the thermal sensitivity of the 2D Profilometer.
As a collaborative effort within the Thirty Meter Telescope (TMT) project, India is committed to supplying 84 polished segments for the primary mirror, employing the innovative Stressed Mirror Polishing (SMP) technology obtained from Coherent Inc., USA. SMP allows for the efficient polishing of highly aspheric non-axisymmetrical glass blanks at an accelerated rate. India-TMT (I-TMT) successfully applied SMP to qualify three glass roundels at Coherent's facility in Richmond, CA. The study focuses on a comparative analysis of Buyoff Stations (BOS) used in the SMP process. It contrasts results from the 43-point hydraulic-based BOS at Coherent with simulated outcomes from the 27-point whiffletree-based BOS at I-TMT. This analysis assesses efficacy and performance differences between the two BOS configurations, involving a comprehensive examination of a 1520mm diameter polished glass roundel. The study integrates Finite Element Method (FEM) simulations with experimental data, providing insights into the efficiency of the respective BOS setups.
Digital holography is one of the most powerful methods used in metrological applications for non-destructive testing of various components as it provides higher precision up to several nanometres at high speed. As there are many industrial applications such as gear metrology, surface tracing of planar components and so on, which involve dynamic objects, and holographic measurements on such objects is a challenging task. The interference pattern is no longer stable, resulting in low contrast and resolution of the recorded hologram thus degrading the recorded information. In this paper, lensless Fourier transform digital holography is used for analysing the interference contrast as a function of velocity for planar moving objects. Numerical simulations have been carried out to study how the size of reference source and the exposure time of camera affects the contrast of the interference pattern of a moving object. Experimentally, lensless Fourier transform holographic geometry is realised via Sagnac interferometer which provides robustness and immunity against the external vibrations during the recording. The maximum extent of velocity is estimated by analysing the variations in contrast such that there is minimal loss of information from the recorded hologram.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.