As neural networks (NNs) become more capable, their computational resource requirements also increase exponentially. Optical systems can provide alternatives with higher parallelizability and lower energy consumption. However, the conventional training method, error backpropagation, is challenging to implement with these analog systems since it requires the characterization of the hardware. In contrast, the Forward-Forward Algorithm defines a local loss function for each layer and trains them sequentially without tracking the error gradient between different layers. In this study, we experimentally demonstrate the suitability of this approach for optical NNs by utilizing the multimode nonlinear propagation inside an optical fiber as a building block of the NN. Compared to the all-digital implementation, the optical NN achieves significantly higher classification accuracy while utilizing the optical system only one epoch per layer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.