Cell fate mapping and lineage tracing are significant ways to understanding the developmental origins of biological tissues. It requires labeling individual cells and tracing the development of their progeny. We develop an infrared laser-evoked gene operator heat-shock microscope system to achieve single-cell labeling in zebrafish. With a fluorescent thermometry technique, we measure the temperature increase in zebrafish tissues induced by infrared laser and identify the optimal heat shock conditions for single-cell gene induction in different types of zebrafish cells. We use this technique to study the fate mapping of T lymphocytes and discover the distinct waves of lymphopoiesis during the zebrafish development.
Macrophages are essential for the regeneration of skeletal muscle after injury. It has been demonstrated that depletion of macrophages results in delay of necrotic fiber phagocytosis and decreased size of regenerated myofibers. In this work, we developed a multi-modal two-photon microscope system for in vivo study of macrophage activities in the regenerative and fibrotic healing process of injured skeletal muscles. The system is capable to image the muscles based on the second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) signals simultaneously. The dynamic activities of macrophages and muscle satellite cells are recorded in different time windows post the muscle injury. Moreover, we found that infiltrating macrophages emitted strong autofluorescence in the injured skeletal muscle of mouse model, which has not been reported previously. The macrophage autofluorescence was characterized in both spectral and temporal domains. The information extracted from the autofluorescence signals may facilitate the understanding on the formation mechanisms and possible applications in biological research related to skeletal muscle regeneration.
The single or multi-photon microscopy based on fluorescent labelling and staining is a sensitive and quantitative method that is widely used in molecular biology and medical research for a variety of experimental, analytical, and quality control applications. However, label-free method is highly desirable in biology and medicine when performing long term live imaging of biological system and obtaining instant tissue examination during surgery procedures. Recently, our group found that femtosecond laser surgery turned a variety of biological tissues and protein samples into highly fluorescent substances. The newly formed fluorescent compounds produced during the laser surgery can be excited via single- and two-photon processes over broad wavelength ranges. We developed a combined confocal and two-photon spectroscopic microscope to characterize the fluorescence from the new compound systematically. The structures of the femtosecond laser treated tissue were studied using Raman spectroscopy and transmission electron microscopy. Our study revealed the mechanisms of the fluorescence emission form the new compound. Furthermore, we demonstrated the applications of the fluorescent compounds for instant evaluation of femtosecond laser microsurgery, study of stem cell responses to muscle injury and neuro-regeneration after spinal cord injury.
Kinesin-1 is a kind of motor protein responsible for intracellular transportation and has been studied in a variety of tissues. However, its roles in cartilage development are not clear. In this study, a kinesin-1 heavy chain (Kif5b) knockout mouse model is used to study the functions of kinesin-1 in the cartilage development. We developed a multimodal nonlinear optical (NLO) microscope system integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) to investigate the morphological and biomedical characteristics of fresh tibial cartilage from normal and mutant mice at different developmental stages. The combined forward and backward SHG imaging resolved the fine structure of collagen fibrils in the extracellular matrix of cartilage. Meanwhile, the chondrocyte morphology in different zones of cartilage was visualized by label-free SRS and TPEF images. The results show that the fibrillar collagen in the superficial zone of cartilage in postnatal day 10 and 15 (P10 and P15) knockout mice was significantly less than that of control mice. Moreover, we observed distorted morphology and disorganization of columnar arrangement of chondrocytes in the growth plate cartilage of mutant mice. This study reveals the significant roles of kinesin-1 in collagen formation and chondrocyte morphogenesis.
The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.
Hemoglobin, one of the most important proteins in the human body, is composed of “heme” groups (iron-containing rings) and “globins” (proteins). We investigate the two-photon excited fluorescence of hemoglobin and its subunit components (heme and globin). We measure the hemoglobin fluorescence lifetime by using a streak camera of ps resolution and confirm that its lifetime is in femtosecond scale. In the study of the fluorescence properties of heme and globin, the experimental results reveal that heme is the sole fluorophore of hemoglobin. Hemoglobin fluorescence can be effectively excited only via two-photon process, because heme has a centrosymmetric molecular structure and two-photon allowed transition is forbidden for single-photon process and vice versa due to the Laporte parity selection rule.
Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.
We demonstrate that two-photon excited endogenous fluorescence enables label-free morphological and functional imaging of various human blood cells. Specifically, we achieved distinctive morphological contrast to visualize morphology of important leukocytes, such as polymorphonuclear structure of granulocyte and mononuclear feature of agranulocyte, through the employment of the reduced nicotinamide adenine dinucleotide (NADH) fluorescence signals. In addition, NADH fluorescence images clearly reveal the morphological transformation process of neutrophils during disease-causing bacterial infection. Our findings also show that time-resolved NADH fluorescence can be potentially used for functional imaging of the phagocytosis of pathogens by leukocytes (neutrophils) in vivo. In particular, we found that free-to-bound NADH ratios measured in infected neutrophils increased significantly, which is consistent with a previous study that the energy consumed in the phagocytosis of neutrophils is mainly generated through the glycolysis pathway that leads to the accumulation of free NADH. Future work will focus on further developing and applying label-free imaging technology to investigate leukocyte-related diseases and disorders.
Real time and in vivo monitoring leukocyte behavior provides unique information to understand the physiological and pathological process of infection. In this study, we demonstrate that two-photon excited reduced nicotinamide adenine dinucleotide (NADH) fluorescence provides imaging contrast to distinguish granulocyte and agranulocyte. By using spectral and time-resolved NADH fluorescence, we study the immune response of human neutrophils against bacterial infection (Escherichia coli). The two-photon excited NADH fluorescence images clearly review the morphological changes from resting neutrophils (round shape) to activated neutrophils (ruffle shape) during phagocytosis. The free-tobound NADH ratio of neutrophils decreases after ingesting disease-causing pathogen: Escherichia coli. This finding may provide a new optical tool to investigate inflammatory processes by using NADH fluorescence in vivo.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.