Visible light communication (VLC) based on light emitting diodes has been regarded as an effective complement to radio frequency signal transmission. The color filter in VLC system plays the pivotal role for boosting signal-noise-ratio. In this paper, a tri-band color transmission filter with bandwidths consisting with LED’s 30nm is designed based on guided mode resonance, incorporating a sub-wavelength aluminum grating on slab dielectric waveguide made of titanium dioxide on silica substrate. Parameters of grating structure, including the grating period, duty cycle, grating thickness, and waveguide thickness, are optimized by employing particle swarm optimization toolbox. The far field spectrum is calculated by rigorous coupled-wave analysis to verify the effectiveness of the designed filter. Three center-wavelength of transmission bands are 440nm, 530 and 630 nm. The full-width-at-half-maximum (FWHM) bandwidths of three bands are about 30nm which consist with LED’s bandwidth.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.