This paper discusses the challenges associated with designing a space-qualified Raman Spectrometer for lunar exploration, emphasizing the need for high sensitivity, compactness, lightweight, and robustness to withstand the harsh lunar environment. The Indian Space Research Organisation (ISRO) is developing a Raman instrument for future lunar missions aimed at identifying mineral constituents in lunar soil with resolution of 8 cm-1 within the wavenumber range of 150 cm-1 to 3800 cm-1. The instrument's design features a monostatic configuration, employing a common optics system for laser focusing, sample positioning, and signal reception to mitigate misalignment errors. Key optimization considerations include mass, volume, and sensitivity, given the stringent constraints of space missions. The instrument utilizes a Volume Phase Holographic (VPH) transmission grating with a groove density of 1500 lines per millimeter (lp/mm) to meet performance requirements. This paper provides valuable insights into the challenges and design considerations inherent in developing Raman spectroscopy instruments for lunar exploration.
The visible emission line coronagraph (VELC) on board the Aditya-L1 mission is an internally occulted reflective coronagraph. It is capable of simultaneous observations of the solar corona in imaging, spectroscopic, and spectropolarimetric modes very close to the solar limb, to 1.05 R ⊙ (R ⊙ – solar radius). Primary mirror (M1) of the VELC receives the light from both the solar disk and the corona up to 3 R ⊙ . In the VELC, occultation happens at the focus of the M1. Secondary mirror (M2) with a central hole size equal to 1.05 R ⊙ is mounted at the focal plane of M1 and serves the purpose of an internal occulter. To meet the proposed science goals of the payload, M1 surface should be super polished with good imaging characteristics. This results in stringent requirements of the surface figure and microroughness on the mirror surface. M1 is an off-axis parabola, so achieving the demanding requirements is quite challenging. At the same time, testing of M1 after development is crucial for evaluating its performance. This paper provides the details of the optical metrology tests carried out on M1 along with the results obtained and their implications on the performance of the VELC.
The solar ultraviolet imaging telescope (SUIT) is an imaging telescope on-board the Aditya-L1 satellite, which is India’s maiden space mission dedicated solely to solar observations. The spatially resolved, high cadence observations are designed to be taken in eleven science filters with full width half maxima ranging between 0.1–58 nm and spread over the near-ultraviolet (NUV) domain of the solar spectrum (200–400 nm). The huge incoming solar flux, limited by the linearity regime performance of the charge coupled device (CCD) as well as the thermal operational constraints, mandate the use of an entrance aperture filter, the thermal filter (TF), for SUIT. The design of this filter is, further, constrained by exposure time and enhanced emission of the sun during eruptive events. From performance perspective, the TF reflects ∼50% of the incident radiation and allows only 0.1–0.45% of the incoming flux to pass within 200–400 nm. The transmission on either side of the operational range is satisfactorily reduced, so as to ensure minimum unwanted light leaking into the imaging system. Therefore, the TF plays a significant role in increasing the photometric efficiency as well as maintaining the operational temperature of the telescope. To the best of our knowledge, this is the first time any attempt of designing and manufacturing any such rejection filter aiming optimized performance in the NUV range is being done for a space-based imaging solar telescope. The choice of materials for substrate and coating for the filter poses several challenges in terms of contamination, corrosion/ oxidation, durability during manufacturing process, long-term exposure to harsh space environment as well as formation of pinholes. The transmission and reflection profiles of the fabricated TF is satisfactory to meet our design and technical constraints. The TF is also qualified for various environmental and radiation conditions. The transmission of the TF is seen to be well within our allowed margins (±10% of the design value) even after being exposed to these qualification tests.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.