This paper reports the formation and properties of hydrogenated amorphous carbon (a-C: H) films having embedded
nanoparticles deposited by cathodic jet carbon arc (CJCA) technique in absence of magnetic field. The films have been
characterized by XRD, HRTEM, XPS, dark conductivity, activation energy, optical band gap, residual stress, hardness,
elastic modulus and plastic index parameter. The properties evaluated of a-C: H films having embedded particles have
been compared with that of undoped and nitrogen doped a-C films having embedded nanoparticles deposited by CJCA
technique. All the properties of a- C films studied are found to depend on the gaseous environment used during the
deposition of the films. These a-C films having embedded nanoparticles act as hard coating materials.
This paper reports the formation and optical properties of amorphous carbon film having embedded
nanoparticles deposited by anodic jet carbon arc technique (AJCA). The films deposited have been
characterized by x-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), and
scanning electron microscope (SEM) and spectroscopy ellipsometry (SE) measurements. XRD pattern
exhibits dominantly an amorphous nature of film. HRTEM investigation shows initially the amorphous
structure. However, on closer examination nanoparticles were found to be embedded in the amorphous
matrix. The effect of substrate bias and the magnetic field on the optical constants evaluated from SE have
been studied. On comparison of deposition condition with and without magnetic field used in growing a-C
films there is a change in the values of optical constants.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.