Optical Coherence Tomography (OCT) has seen broad application in dentistry including early carious lesion detection
and imaging defects in resin composite restorations. This study investigates expanding the clinical usefulness by
investigating methods to use OCT for obtaining three-dimensional (3D) digital impressions, which can be integrated to
CAD/CAM manufacturing of indirect restorations. 3D surface topography ‘before’ and ‘after’ a cavity preparation was
acquired by an intraoral cross polarization swept source OCT (CP-OCT) system with a Micro-Electro-Mechanical
System (MEMS) scanning mirror. Image registration and segmentation methods were used to digitally construct a
replacement restoration that modeled the original surface morphology of a hydroxyapatite sample. After high resolution additive manufacturing (e.g. polymer 3D printing) of the replacement restoration, micro-CT imaging was performed to examine the marginal adaptation. This study establishes the protocol for further investigation of integrating OCT with CAD/CAM of indirect dental restorations.
A cross-polarization 1310-nm optical coherence tomography system (CP-OCT), using a beam splitter based
design, was used to assess ex vivo growth of complex multi-species dental biofilms. These biofilm
microcosms were derived from plaque samples along the interface of composite or amalgam restoration in
children with a history of early childhood caries. This paper presents a method of measuring the mean biofilm
height of mature biofilms using CP-OCT. For our in vivo application, the novel swept source based CP-OCT
intraoral probe (Santec Co. Komaki, Japan) dimensions and system image acquisition speed (20 image
frames/second) allowed imaging pediatric subjects as young as 4 years old. The subsurface enamel under
the interface of composite resin restorations of pediatric subjects were imaged using CP-OCT. Cavitated
secondary caries is clearly evident from sound resin composite restorations.
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 x 20 cm can be obtained where the images have pixel-resolution of 100 μm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 μR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.
The new Multi-View Reconstruction (MVR) method for generating 3D vascular images was evaluated experimentally. The MVR method requires only a few digital subtraction angiographic (DSA) projections to reconstruct the 3D model of the vessel object compared to 180 or more projections for standard CBCT. Full micro-CBCT datasets of a contrast filled carotid vessel phantom were obtained using a Microangiography (MA) detector. From these datasets, a few projections were selected for use in the MVR technique. Similar projection views were also obtained using a standard x-ray image intensifier (II) system. A comparison of the 2D views of the MVRs (MA and II derived) with reference micro-CBCT data, demonstrated best agreement with the MA MVRs, especially at the curved part of the phantom. Additionally, the full 3D MVRs were compared with the full micro-CBCT 3D reconstruction resulting for the phantom with the smallest diameter (0.75 mm) vessel, in a mean centerline deviation from the micro-CBCT derived reconstructions of 29 μm for the MA MVR and 48 μm for the II MVR. The comparison implies that an MVR may be substituted for a full micro-CBCT scan for evaluating vessel segments with consequent substantial savings in patient exposure and contrast media injection yet without substantial loss in 3D image content. If a high resolution system with MA detector is used, the improved resolution could be well suited for endovascular image guided interventions where visualization of only a small field of view (FOV) is required.
KEYWORDS: Head, Radon transform, Signal attenuation, Data analysis, Data acquisition, Sensors, Computed tomography, Data centers, Image processing, Image acquisition
Truncation of projection data in CT produces significant artifacts in the reconstruction process due to non-locality of the Radon transform. In this paper, we present a method for reducing these truncation artifacts by estimating features that lie outside the region of interest (ROI) and using these features to complete the truncated sinogram. Projection images of an object are obtained. A sinogram is obtained by stacking profile data from all projection angles. A simulated truncated sinogram is generated by setting pixel values outside an ROI to zero. The truncated sinogram is then transformed into a (radius, phase) image, with pixel values in what we term as the Polar representation (PR) image corresponding to the minimum value along sine curves given by x = r*cos(projection angle + phase). The PR image contains data for radii greater than the ROI radius. Pixel values outside the ROI in the completed sinogram are determined as follows. For each pixel in the PR image, a sine curve is generated in the completed sinogram image outside the ROI, having the same pixel value as that of the PR image for that radius and phase. Successive sine curves are laid and the values of each are summed. The intensity outside is then equalized to the intensity inside the ROI. The completed sinogram is then reconstructed, to obtain completed reconstruction. The percentage error in the difference image between the full FOV reconstruction and the corresponding completed reconstruction and the extrapolated-average reconstruction are 1.1% and 3.3% respectively. This indicates that the completed reconstruction is closer to full FOV reconstruction. Thus, the sinogram completion can be used to improve reconstructions from truncated data.
Cone-beam CT reconstruction can be performed at lower integral dose, by using a non-uniform beam filter between the x-ray source and the patient to obtain good image quality within an ROI with minimal artifacts. To evaluate the method, a human head phantom was placed on a rotary stage. Cone-beam projection images of the phantom were obtained with and without an ROI filter (dose reduction factor ~7). A mapping function was established to equalize the intensity outside the ROI (to compensate for the attenuation by the filter) to the intensity inside by assuming that those features lying both inside and outside very close to the edge of the ROI are the same. Reconstructed images were obtained using equalized projection images for 2 cases: one in which the outside region was smoothed using an averaging filter and the other with no smoothing outside. In addition, a third case was simulated by calculating the average pixel value inside the ROI for each image and assigning this value to all pixels outside the ROI for that image. The images were then back projected using a Feldkamp algorithm. We found that the three cases yield results inside the ROI comparable to those obtained using FFOV projections. In addition, the ROI filter reconstruction with smoothing provides image information outside the ROI comparable to the FFOV reconstruction. CT using an ROI filter provides a means to reconstruct reliable 3D for a volume of interest with greatly reduced integral dose compared to FFOV projections and with minimal artifacts.
High-resolution computed tomography (CT) reconstructions currently require either full field of view (FOV) exposure, resulting in high dose, or region of interest (ROI) exposure, resulting in artifacts. To obtain high-resolution 3D reconstruction of an ROI with minimal artifiacts, we have developed a method involving a non-uniform ROI beam filter to reduce dose outside the ROI while acquiring the ROI at a higher dose. High-resolution, high-dose full-field projections ofa phontom were obtained. ROIs in the images were selected and the low-dose data outside the ROI were simulated by adding various levels of noise to the projection data corresponding to a dose of 1/16 and 1/256 of the original dose. For an ROI of 30% FOV, artifacts in the reconstructed ROI were minimal for both dose reduction levels. For an ROI of 10% FOV, artifacts remained minimal only for the 1/16th dose case. The effect of the presence of a high contrast object outside the ROI was also studied. We found that the intensity of the artifacts increases with the contrast of the object, its size, and its distance from the axis of rotation. CT using an ROI filter provides a way to reconstruct an ROI with reduced integral dose and yet with minimal artifacts and improved spatial resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.