We aim to integrate two-photon polymerization (TPP) in a fully digitalized and automated workflow for micro- and nanooptics production. This requires linking the coordinate system of the writing laser scanner to the geometry of the sample or previously fabricated structures on the sample. We developed a fast layer detection algorithm, which determines the axial position and the tilt angles of both interface planes of the photosensitive material using the integrated microscope camera of the TPP system. Furthermore, we identify the shear angles between the camera and the lateral scanner axes. The individual measurement results are stored and accessible via direct-written identification QR code on the sample itself. This is an important step towards an individualized automatic workflow based on digital twins.
In this work, we demonstrate a fabrication strategy for micro- and nanooptical structures by integrating UV-nanoimprint lithography (NIL) towards two-photon polymerization (2PP) for cost-effective scalable production. Herein, 2PP was first employed to create the structures. These were then used as master molds for the subsequent UV-NIL process for high-throughput replication. With this fabrication strategy, various structures with dimensions from sub-micrometer to centimeter scales were produced and replicated. High-quality UV imprinting of the 2PP-produced master sample can be realized. The demonstrated fabrication strategy exhibits great potential for applications in scalable production of optical and optoelectronic devices or systems.
Organic laser sources offer the opportunity to integrate flexible and widely tunable lasers in polymer waveguide circuits, e.g. for Lab-on-Foil applications. Therefore, it is necessary to understand gain and degradation processes for long-term operation. In this paper we address the challenge of life-time (degradation) measurements of photoluminescence (PL) and optical gain in thin-film lasers. The well known guest-host system of aluminum-chelate Alq3 (Tris-(8-hydroxyquinoline)aluminum) as host material and the laser dye DCM2 (4-(Dicyanomethylene)-2- methyl-6-julolidyl-9-enyl-4H-pyran) as guest material is employed as laser active material. Sample layers have been built up by co-evaporation in an ultrahigh (UHV) vacuum chamber. 200nm thick films of Alq3:DCM2 with different doping concentrations have been processed onto glass and thermally oxidized silicon substrates. The gain measurements have been performed by the variable stripe length (VSL) method. This measurement technique allows to determine the thin-film waveguide gain and loss, respectively. For the measurements the samples were excited with UV irradiation (ƛ = 355nm) under nitrogen atmosphere by a passively Q-switched laser source. PL degradation measurements with regard to the optical gain have been done at laser threshold (approximately 3 μJ/cm2), five times above laser threshold and 10 times above laser threshold. A t50-PL lifetime of > 107 pulses could be measured at a maximum excitation energy density of 32 μJ/cm2. This allows for a detailed analysis of the gain degradation mechanism and therefore of the stimulated cross section. Depending on the DCM2 doping concentration C the stimulated cross section was reduced by 35 %. Nevertheless, the results emphasizes the necessity of the investigation of degradation processes in organic laser sources for long-term applications.
To integrate polymer fiber based physical layer for avionic data network, it is necessary to understand the impact and cause of harsh environments on polymer fiber optic components and harnesses. Since temperature and vibration have a significant influence, we investigate the variation in optical transmittance and monitor the endurance of different types of connector and splices under extreme aircraft environments. Presently, there is no specific aerospace standard for the application of polymer fiber and components in the aircraft data network. Therefore, in the paper we examine and define the thermal cycling and vibration measurement set up and methods to evaluate the performance capability of the physical layer of the data network. Some of the interesting results observed during the measurements are also presented.
By decreasing the arc power and choosing the optimal arc time, we use the FSM-20PM ARC Fusion Splicer for joining
fluoride(ZBLAN) and silica fibers. The best results of the splice loss is 1.58dB, and the results can be improved if the
Fusion Splicer with more stable arc power. Then glue connection is used to fix the splicing point, and the minimal loss
we measured is 0.14dB. The above results show that it is possible to connect the fluoride and silica fibers by using
Fusion Splicer with appropriate arc power and arc time, which will make the fabrication of these splices simpler and
easier to be handled.
Up-conversion fiber lasers based on Pr3+/Yb3+ doped fluoride fibers and pumped at 835 nm can operate on emission lines in the red, orange, green, and blue spectral region. Up to now only Fabry-Perot configurations with two mirrors butt-coupled to the fiber ends were investigated. In this paper we present the first visible Pr3+/Yb3+ fiber lasers in a ring configuration. In contrast to the usual Fabry-Perot configuration, the basic ring resonator setup contains no free-space optics and no parts which need to be adjusted. The main challenge for such a setup is the connection between the fluoride laser fiber and the remaining part of the ring resonator, which is made from silica fibers. Due to the very different melting temperatures of both glasses usual fusion splices are impossible. We use a special technique to couple the fibers with glue.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.