X-ray framing cameras based on proximity-focused micro-channel plates (MCP) have been playing an important role as diagnostics of inertial confinement fusion experiments [1]. Most of the current x-ray framing cameras consist of a single MCP, a phosphor, and a recording device (e.g. CCD or photographic films). This configuration is successful for imaging x-rays with energies below 20 keV, but detective quantum efficiency (DQE) above 20 keV is severely reduced due to the large gain differential between the top and the bottom of the plate for these volumetrically absorbed photons [2]. Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 40 keV [3]. To increase the sensitivity in the high-energy region, we propose to use a combination of two MCPs. The first MCP is operated in low gain and works as a thick photocathode, and the second MCP works as a high gain electron multiplier [4,5]. We assembled a proof-of-principle test module by using this dual MCP configuration and demonstrated 4.5% DQE at 60 keV x-rays.
T. Clancy, J. Caggiano, J. McNaney, M. Eckart, M. Moran, V. Glebov, J. Knauer, R. Hatarik, S. Friedrich, R. Zacharias, A. Carpenter, M. Shoup, T. Buczek, M. Yeoman, Z. Zeid, N. Zaitseva, B. Talison, J. Worden, B. Rice, T. Duffy, A. Pruyne, K. Marshall
This paper describes the engineering architecture and function of the neutron Time-of-Flight (nToF) diagnostic suite
installed on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). These
instruments provide key measures of neutron yield, ion temperature, drift velocity, neutron bang-time, and neutron
downscatter ratio.
Currently, there are five nToFs on three collimated lines-of-site (LOS) from 18m to 27m from Target Chamber Center,
and three positioned 4.5m from TCC, within the NIF Target Chamber but outside the vacuum and confinement boundary
by use of re-entrant wells on three other LOS.
NIF nToFs measure the time history and equivalent energy spectrum of reaction generated neutrons from a NIF
experiment. Neutrons are transduced to electrical signals, which are then carried either by coaxial or Mach-Zehnder
transmission systems that feed divider assemblies and fiducially timed digitizing oscilloscopes outside the NIF Target
Bay (TB) radiation shield wall.
One method of transduction employs a two-stage process wherein a neutron is converted to scintillation photons in
hydrogen doped plastic (20x40mm) or bibenzyl crystals (280x1050mm), which are subsequently converted to an
electrical signal via a photomultiplier tube or a photo-diode.
An alternative approach uses a single-stage conversion of neutrons-to-electrons by use of a thin (0.25 to 2 mm) Chemical
Vapor Deposition Diamond (CVDD) disc (2 to 24mm radius) under high voltage bias. In comparison to the scintillator
method, CVDDs have fast rise and decay times (<ns), have very low residual tails, are insensitive to shot gammas, and
are less sensitive to the neutron signal of interest.
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam Nd glass laser. Its 1.053-µm output is frequency converted to produce 1.8-MJ, 500-TW pulses in the ultraviolet. Refer to the companion overview articles in this issue for more information. High-energy-density and inertial confinement fusion physics experiments require the ability to precisely align and focus pulses with single-beam energy up to 20 KJ and durations of a few nanoseconds onto millimeter-sized targets. NIF's alignment control system now regularly provides automatic alignment of the four commissioned beams prior to every NIF shot in approximately 45 min, and speed improvements are being implemented. NIF utilizes adaptive optics for wavefront control, which significantly improves the ability to tightly focus each laser beam onto a target. Multiple sources of both static and dynamic aberration are corrected. This article provides an overview of the NIF automatic alignment and wavefront control systems, and provides data to show that the facility is expected to meet its primary requirements to position beams on the target with an accuracy of 50-µm rms over the 192 beams and to focus the pulses into a 600-µm spot.
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system. High-energy-density and inertial confinement fusion physics experiments require the ability to precisely align and focus pulses with single beam energy up to 20KJ in a few nanoseconds onto mm-sized targets. NIF's alignment control system now regularly provides automatic alignment of the four commissioned beams prior to every NIF shot in approximately 45min., and speed improvements are being implemented. NIF utilizes adaptive optics for wavefront control, which significantly improves the ability to tightly focus each laser beam onto a target. Multiple sources of both static and dynamic aberration are corrected. This presentation provides an overview of the NIF Automatic Alignment and Wavefront Control Systems including the accuracy and target spot size performance achieved.
KEYWORDS: Wavefronts, National Ignition Facility, Control systems, Actuators, Sensors, Mirrors, High power lasers, Computing systems, Coating, Deformable mirrors
The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).
The NIF laser system will be capable of delivering 1.8 MJ of 351 nm energy in 192 beams. Diagnostics instruments must measure beam energy, power vs. time, wavefront quality, and beam intensity proifle to characterize laser performance. Alignment and beam diagnostics are also used to set the laser up for the high power shots and to isolate problems when performance is less than expected. Alignment and beam diagnostics are multiplexed to keep the costs under control. At the front-end the beam is aligned and diagnosed in an input sensor package. The output 1053 nm beam is sampled by collecting a 0.1% reflection from an output beam sampler and directing it to the output sensor package (OSP). The OSP also gets samples from final focus lens reflection and samples from the transport spatial filter pinhole plane. The output 351 nm energy is measured by a calorimeter collecting the signal from an off-axis diffractive beam-sampler. Detailed information on the focused beam in the high-energy target focal plane region is gathered in the precision diagnostics. This paper describes the design of the alignment and diagnostics on the NIF laser system.
KEYWORDS: Wavefronts, National Ignition Facility, Control systems, Sensors, Actuators, Deformable mirrors, Mirrors, Wavefront sensors, Control systems design, Near field optics
A wavefront control system will be employed on NIF to correct beam aberrations that otherwise would limit the minimum target focal spot size. For most applications, NIF requires a focal spot that is a few times the diffraction limit. Sources of aberrations that must be corrected include prompt pump-induced distortions in the laser slabs, thermal distortions in the laser slabs from previous shots, manufacturing figure errors in the optics, beam off-axis effects, gas density variations, and gravity, mounting, and coating-induced optic distortions.
The National Ignition Facility (NIF) laser will use a 192- beam multi-pass architecture capable of delivering several MJ of UV energy in temporal phase formats varying from sub- ns square to 20 ns precisely-defined high-contrast shapes. Each beam wavefront will be subjected to effects of optics inhomogeneities, figuring errors, mounting distortions, prompt and slow thermal effects from flashlamps, driven and passive air-path turbulence, and gravity-driven deformations. A 39-actuator intra-cavity deformable mirror, controlled by data from a 77-lenslet Hartman sensor will be used to correct these wavefront aberrations and thus to assure that stringent farfield spot requirements are met. We have developed numerical models for the expected distortions, the operation of the adaptive optics systems, and the anticipated effects on beam propagation, component damage, frequency conversion, and target-plane energy distribution. These models have been extensively validated against data from LLNL's Beamlet, and Amplab lasers. We review the expected beam wavefront aberrations and their potential for adverse effects on the laser performance, describe our model of the corrective system operation, and display our predictions for corrected-beam operation of the NIF laser.
Erlan Bliss, Steven Boege, Robert Boyd, Donald Davis, Robert Demaret, Mark Feldman, Alan Gates, Fred Holdener, Carl Knopp, R. Kyker, C. Lauman, Tom McCarville, John Miller, Victoria Miller-Kamm, W. Rivera, J. Thaddeus Salmon, J. Severyn, Sang Sheem, Stan Thomas, Calvin Thompson, David Wang, M. Yoeman, Richard Zacharias, Clifford Chocol, J. Hollis, Daniel Whitaker, J. Brucker, L. Bronisz, T. Sheridan
Earlier papers have described approaches to NIF alignment and laser diagnostics tasks. Now, detailed design of alignment and diagnostic systems for the National Ignition Facility (NIF) laser is in its last year. Specifications are more detailed, additional analyses have been completed, Pro- E models have been developed, and prototypes of specific items have been built. In this paper we update top level concepts, illustrate specific areas of progress, and show design implementations as represented by prototype hardware. The alignment light source network has been fully defined. It utilizes an optimized number of lasers combined with fiber optic distribution to provide the chain alignment beams, system centering references, final spatial filter pinhole references, target alignment beams, and wavefront reference beams. The input and output sensor are being prototyped. They are located respectively in the front end just before beam injection into the full aperture chain and at the transport spatial filter, where the full energy infrared beam leaves the laser. The modularity of the input sensor is improved, and each output sensor mechanical package now incorporates instrumentation for four beams.
KEYWORDS: Wavefronts, National Ignition Facility, Control systems, Wavefront sensors, Control systems design, Laser applications, Optics manufacturing, Computing systems, Sensors, Interferometers
The use of lasers as the driver for inertial confinement fusion experiments and weapons physics applications is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building lasers for such applications The National Ignition Facility (NIF) is a large 192-beam laser facility now under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected focal spot minimum size is limited by wavefront aberrations in the laser system. NIF is designed with a wavefront control system to correct these aberrations to yield a focal spot that is small enough for NIF' s intended applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, thermal distortions in the amplifiers from previous shots, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and manufacturing figure errors in the optics are also partially corrected by the wavefront control system. The NIF wavefront control system consists of five subsystems for each of the 192 beams: 1) a deformable mirror, 2) a wavefront sensor, 3) a computer controller, 4) a wavefront reference system, and 5) a rapid reconfiguration system to allow the wavefront control system to operate to within one second of the laser shot. The system includes the capability for in situ calibrations and operates in closed loop prior to the shot. Shot wavefront data is recorded. This paper describes the function, realization, and performance of each wavefront control subsystem. Subsystem performance will be characterized by computer models and by test results. The focal spot improvement in the NIF laser system effected by the wavefront control system will be characterized through computer models. The sensitivity of the target focal spot to various aberration sources will be presented. Analyses to optimize the wavefront control system will also be presented.
The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error.
The operational requirements of the National Ignition Facility place tight constraints upon its alignment system. In general, the alignment system must establish and maintain the correct relationships between beam position, beam angle, laser component clear apertures, and the target. At the target, this includes adjustment of beam focus to obtain the correct spot size. This must be accomplished for all beamlines in the time consistent with planned shot rates and yet, in the front end and main laser, beam control functions cannot be initiated until the amplifiers have sufficiently cooled so as to minimize dynamic thermal distortions during and after alignment and wavefront optimization. The scope of the task dictates an automated system that implements parallel processes. We describe reticle choices and other alignment references, insertion of alignment beams, principles of operation of the Chamber Center Reference System and Target Alignment Sensor, and the anticipated alignment sequence that will occur between shots.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.