The integration of photonic materials in applications traditionally dominated by electronic components, such as light emitting diodes, photovoltaic cells and all-optical switches has emerged as a compelling area of study, unlocking new possibilities. Crystalline organic compounds are of particular interest for many applications where their performance is impacted by the crystalline properties. However, investigating crystallization processes in solution remains challenging because their rapid and complex dynamics are difficult to quantify. To this end, we developed an innovative multimodal optical setup capable of in-situ measurements of dynamic processes. Our approach combines a tunable femtosecond pulsed laser and a continuous wave laser, leveraging spectrally resolved scattering and fluorescence detection to measure up to nine different optical effects: second and third harmonic scattering and their depolarization ratios, linear light scattering, multi- and one photon excitation fluorescence, optical rotation and transmission. In this study, we aim to discover the crystallization dynamics of regioregular poly(3-hexylthiophene) through anti-solvent addition. Our findings demonstrate the capability of our setup to provide valuable insights for the optimization of photonic materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.