Magnetic domain-wall devices, modulated by the spin-transfer torque or the spin-orbit torque effect, can implement logical operations in a manner that is inherently compact and cascadable. Using circuit simulations with micromagnetics-validated compact models, we evaluate the device requirements for domain-wall logic that has low latency, outperforms scaled CMOS logic in energy efficiency, and remains robust to process variations. We further show how the inherent non-volatility of these devices can be leveraged to construct stateful logic circuits that save energy and area relative to their CMOS counterparts and propose novel logic architectures that exploit the unique advantages of domain-wall devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.