Local alterations in UV absorption have been used to investigate subsurface damage in transparent optical materials. As a detection method, a collinear pump-probe arrangement has been utilized and absorption-induced deflections in the nonresonant probe beam has been detected. Depending on the changes in deflection and transmission signals, variations in absorption mappings could be attributed to different origins of material inhomogenities or foreign particles. Also, lightprovoked changes in absorption that can occur with non-linear optical materials have been detected by the proposed method.
Cleaning of substrates prior to optical coating is an important step in the manufacturing of high performance optical components. It is well known that the ultra-sonic frequency used during substrate cleaning has a strong influence on the quality of the cleaning process and the number of remaining particles on the surface. Therefore, we have investigated the influence of ultra-sonic frequency during substrate cleaning on the laser resistance of antireflection coatings. For this purpose, a SiO2 / Ta2O5 AR-coating for a normal angle of incidence at 1064 nm was deposited onto fused silica substrates. Prior to deposition, the substrates were cleaned with cleaning processes. The applied ultra-sonic frequencies were 40, 80, 120 and 500 kHz. After deposition the LIDT was measured using a 1064 nm ns-pulsed laser test bench. It turned out that the different ultra-sonic-cleaning processes have a strong influence on the number of remaining particles on the surface of the cleaned samples. The counted number of particles with sizes greater < 83 nm were between 1320 and 12 particles for the different applied ultra-sonic frequencies. In consequence the different cleaned and AR-coated samples show different laser damage behavior. Nevertheless the measured particle density does not totally explain the differences in laser resistance.
Atomic layer deposition (ALD) enables coating complex shaped substrates with excellent uniformity along the surface of the optic. Recently developed nanoporous SiO2 layers have been applied as single layer antireflection coatings on fused silica substrates at both 1064 nm and 532 nm wavelengths. The LIDT in the nanosecond regime at both 1064 nm and 532 nm of these nanoporous SiO2 coatings as well as the bare substrates were investigated. The stability of the coatings with respect to LIDT has been evaluated under normal atmospheric conditions, dry air with relative humidity < 10% and nitrogen atmosphere. The multiple pulse damage characteristic for 5000 shots showed in all cases no significant pulse dependence. At 532 nm wavelength, the 0%-LIDT value is between 60 J/cm2 and 70 J/cm2, which is comparable to the values measured on uncoated substrates (80 J/cm2). In case of 1064 nm the 0%-LIDT is only between 40 J/cm2 and 50 J/cm2 (uncoated substrate: 100 J/cm2) which is attributed to generated defects during the fabrication process.
Several studies have reported on the detrimental effects of inadequate cleaning on the performance of optical components exposed to laser radiation. The remaining particulates, contaminants or residue located in the coating or on the substrate surface can absorb laser energy and consequently induce damage. To minimize these contaminants, investigations of various cleaning processes have been performed in both the research and industry communities. Transparent published results and comparisons of the different cleaning processes considered, however, are limited due to proprietary considerations. In addition to this, the manufacturing environment, deposition processes, substrate- and deposition materials all have an influence on the effectiveness of a cleaning process. The purpose of this study was to investigate different cleaning procedures and their influence on the laser resistance of ion-beam sputtered antireflective coatings. For this purpose, a SiO2 / Ta2O5 multilayer antireflective coating for a normal angle of incidence at 1064 nm was deposited onto fused silica substrates. Prior to deposition, the substrates were cleaned with a variety of cleaning solutions and procedures and their roughness and surface quality inspected. All samples were characterized in terms of their laser damage threshold using a 1064 nm ns-pulsed test bench and subsequently visually inspected in order to understand the cause of the damage. In this work, the details of the cleaning steps and the corresponding laser damage performance for the different cleaning processes are presented and compared.
In this investigation the influence of the local environment on the laser damage threshold of anti-reflective coatings is
reported. For this purpose, HfO2 / SiO2 anti-reflective coatings were deposited on fused silica substrates using an ionbeam
sputter system. Laser damage threshold measurements were performed using two test procedures, S-on-1 and Ron-
1, at 355 nm for temperatures ranging from room temperature up to 250 °C and in different atmospheres. The two
test procedures had comparable LIDT results with a possible pre-conditioning effect evidenced by a broadening of the
transition range of the R-on-1 measured samples. It was found that samples measured in normal atmospheric air showed
superior laser resistance compared to samples measured under nitrogen purge or in dry air. Samples measured in normal
atmospheric air also showed a temperature dependence with an improved laser resistance at 25 °C. No temperature
dependence was observed for samples measured under nitrogen purge or in dry air. In this paper, literature showing
similar effects is reviewed and the influence of a water epilayer on the coating as a possible cause for the observed
results is discussed.
Optical coatings used in ultraviolet applications are often exposed to harsh environments operating at elevated temperatures. In order to study the impact of the ageing effects optical coatings experience at various operating temperatures, an ultraviolet laser-induced degradation test system has been developed. It allows for flexible use in both a long-term stability test bench as well as in an LIDT measurement system. This work contains the preliminary results of optical degradation tests at 355 nm performed on anti-reflective coatings. As a subsequent step, the LIDT of the samples were measured using a Q-Switched Nd:YAG laser operating at 1064nm.
Manufacturing processes from the private and academic sectors were used to deposit anti-reflective and high-reflective coatings composed of Ta2O5 - SiO2 multilayers. Used deposition techniques included three Ion Assisted Deposition (IAD) systems and an Ion Beam Sputtering (IBS) system. Coatings were performed on fused silica (Corning 7980) substrates polished by two different suppliers. LIDT Measurements were performed using a Q-Switched Nd:YAG laser operating at 1064nm. The paper presents a comparison of the coatings in terms of laser damage threshold values, optical properties and surface quality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.