We theoretically and experimentally show coherent pulse stacking (CPS) can accommodate tens-of-fs pulse durations and has negligible stacking fidelity degradation with increased pulse bandwidth. Simulations prove large number of tens-of-fs pulses can be stacked with high pre-pulse contrast. In an experiment, nine spectrally broadened and fiber amplified pulses are stacked using four cascaded cavities. CPS of pulses with different spectral bandwidths, up to 75 nm base-to-base (<50 fs transform-limited duration), are tested, showing negligible stacking degradation due to increased bandwidth. This work provides a path towards high energy, tens-of-fs pulses from ultrafast fiber lasers.
We report development of 85µm core Yb-doped and Ge-doped chirally-coupled-core (CCC) fibers, and their integration via fusion-splicing into an all-fiber optical amplifier system. This system, consisting of a CCC fiber amplifier and a 6+1 fusion-spliced signal-pump-combiner with a passive CCC fiber feed-through produces robust single mode output (diffraction-limited) in a counter-pumped configuration with passive-fiber leads as short as ~30cm. The Yb-doped 85µm core CCC fiber amplifiers had produced ~10mJ energy pulses at close to ~100W of average power. This achieved performance and monolithic all-fiber integration are required for compact and robust coherently-combined laser array drivers of laser plasma accelerators.
We demonstrated 55-fs pulses from spectrally combining two chirped-pulse fiber channels operating at partially-overlapped spectral bands, with a pulse shaper incorporated in each channel. The spectral intensity and phase shaping in two fiber channels are coherently-spectrally synthesized by phase-synchronizing the two channels at the overlapped spectrum. To the best of our knowledge, 55 fs is the shortest pulse duration from a spectrally combined fiber system at one-micron Yb wavelength, and this work is the first demonstration of coherent spectral synthesis of two pulse shapers. This work provides a promising path toward high-energy, tens-of-fs fiber chirped-pulse amplifier systems.
We have developed a scalable, ultrafast laser beam combination scheme, which can combine many beams using two diffractive optics. A feature of this approach is the information contained in the uncombined output beams, which can be used to derive phase error information. We show that a machine-learning algorithm can learn to stabilize beam combination with high efficiency, by finding correlations between uncombined output beam patterns and phase errors.
KEYWORDS: Fiber amplifiers, Ultrafast phenomena, Optical filters, Amplifiers, Linear polarizers, Linear filtering, Electronic filtering, Control systems
We report demonstration of a new spectrally-controllable device, based on a sequence of linear polarizers and birefringent plates, which allows to accurately and adjustably tailor its spectral filtering properties for achieving complete gain-narrowing compensation over ~30nm of signal bandwidth in an Yb-doped fiber system with the total gain reaching 150dB. The experimental demonstration was performed in a regenerative Yb-fiber amplifier system with controllable number of passes, allowing to characterize both signal spectral-narrowing, and as well as spectral compensation at varying levels of achieved total gain. This result opens a pathway towards 100fs duration multi-mJ pulses from fiber CPSA systems.
10mJ energy extraction from a single Yb-doped 85µm core CCC fiber has been achieved using coherent pulse stacking amplification (CPSA) technique. This has been achieved by amplifying a burst of 81 stretched pulses with modulated amplitudes and phases, in a Yb-doped fiber CPA system where it is amplified to 10mJ with low nonlinearity, and coherently stacked into a single pulse with 4+4 cascading GTI cavities. The burst is generated by sending femtosecond pulses from a 1GHz repetition rate mode-locked fiber oscillator into a pair of amplitude and phase electro-optic modulators, where the burst is carved out and pre-shaped to compensate for strong saturation effect in fiber CPA system and to provide correct relative phases for coherent pulse stacking. After each pulse is stretched to approximately 1-ns, the burst is amplified through several cascading fiber amplifiers and down-counted to 1kHz repetition rate, and it extracts >90% stored energy from the last Yb-doped 85µm core CCC fiber. This multi-mJ burst of 81 pulses is then coherently stacked into a single pulse in 4+4 multiplexed GTI cavities consisting of 4 sets of 1ns-roundtrip cavities followed by 4 sets of 9-ns roundtrip cavities. After stacking, the stretched pulse is compressed to <540fs using diffraction-grating pulse compressor. CPSA enables generation of multi-mJ femtosecond pulses with one fiber amplifier channel.
We develop a novel, femtosecond beam combination technique, which can coherently combine large numbers of ultrashort pulse beams using a diffractive optic pair. Existing methods of ultrashort pulse beam combining increase the number of combining optics with the number of beams. Diffractive combiners add many beams on one optic, but exhibit loss for femtosecond pulses due to pulse front tilt. We solve this problem by adding a second diffractive optic to cancel pulse front tilt. By selecting parameters, uncorrected temporal and spatial dispersions from the two DOEs can be made negligible for >30fs pulse widths.
We numerically model a proof-of-principle case of 1-D, 4-beam combination, showing that four 120fs beams can be combined with 92% efficiency. This has been demonstrated experimentally with the preservation of 120fs pulse duration and a relative combining efficiency of >85%. A 120fs Yb fiber oscillator output is amplified in a YDFA, split into four phase-controlled channels, and collimated to produce a beam array. This is sent to the DOE pair, forming a combined beam which is compressed and sent to FROG diagnostic. The measured output pulse duration is identical to the oscillator pulse duration.
Combining efficiency theory for a 2-D array of ultrashort pulse beams is developed, showing that hundreds of beams can be combined with >90% efficiency. We calculate that for a 224-beam case with practical optical parameters, and temporal dispersion causes 1% extra loss, while spatial dispersion causes 2.5% extra loss, in addition to possible DOE imperfections and beam aberrations.
We report multi-mJ energy (>5mJ) extraction from femtosecond-pulse Yb-doped fiber CPA using coherent pulse stacking amplification (CPSA) technique. This high energy extraction has been enabled by amplifying 10’s of nanosecond long pulse sequence, and by using 85-µm core Yb-doped CCC fiber based power amplification stage. The CPSA system consists of 1-GHz repetition rate mode-locked fiber oscillator, followed by a pair of fast phase and amplitude electro-optic modulators, a diffraction-grating based pulse stretcher, a fiber amplifier chain, a GTI-cavity based pulse stacker, and a diffraction grating pulse compressor. Electro-optic modulators are used to carve out from the 1-GHz mode-locked pulse train an amplitude and phase modulated pulse burst, which after stretching and amplification, becomes equal-amplitude pulse burst consisting of 27 stretched pulses, each approximately 1-ns long. Initial pulse-burst shaping accounts for the strong amplifier saturation effects, so that it is compensated at the power amplifier output. This 27-pulse burst is then coherently stacked into a single pulse using a multiplexed sequence of 5 GTI cavities. The compact-footprint 4+1 multiplexed pulse stacker consists of 4 cavities having rountrip of 1 ns, and one Herriott-cell folded cavity - with 9ns roundtrip. After stacking, stretched pulses are compressed down to the bandwidth-limited ~300 fs duration using a standard diffraction-grating pulse compressor.
A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs.
Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a
CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the
receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path
length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications
components, and uses regular telecom fiber.
We describe a 60W, 70fs, 20kHz Ti:sapphire CPA laser system using cryogenically-cooled amplifiers, currently
operating at the Advanced Light Source at LBNL. The system consists of an oscillator, a 20 kHz regenerative preamplifier,
and two power amplifiers to produce two output beams, each at 30W. Each power amp can be pumped by two
90 Watt, 10 kHz, diode-pumped, doubled YLF lasers simultaneously (for 10 kHz) or interleaved in time (for 20 kHz).
The regen is pumped at 20 kHz and 60W, producing 8W output which is split between the power amps. To maintain the
crystals near the thermal conductivity peak at ~50°K, we used 300 Watt cryorefrigerators mechanically decoupled from
the optical table. Pulses are compressed in a quartz transmission grating compressor, to minimize thermal distortions of
the phase front typical of gold coated gratings at high power density. Transmission through the compressor is >80%,
using a single 100 x 100mm grating. One of the 30W output beams is used to produce 70fs electron bunches in the
synchrotron light source. The other is delayed by 300ns in a 12-pass Herriot cell before amplification, to be
synchronized with the short light pulse from the synchrotron.
John Corlett, William Barletta, Stefano DeSantis, Larry Doolittle, William Fawley, Philip Heimann, Stephen Leone, Steven Lidia, Derun Li, Gregory Penn, Alex Ratti, Matheus Reinsch, Robert Schoenlein, John Staples, Gregory Stover, Steve Virostek, Weishi Wan, Russell Wells, Russell Wilcox, Andy Wolski, Jonathan Wurtele, Alexander Zholents
We describe the design concepts for a potential future source of femtosecond x-ray pulses based on synchrotron radiation production in a recirculating electron linac. Using harmonic cascade free-electron lasers (FEL's) and spontaneous emission in short-period, narrow-gap insertion devices, a broad range of photon energies are available with tunability from EUV to hard x-ray regimes. Photon pulse durations are controllable and range from 10 fs to 200 fs, with fluxes 107-1012 photons per pulse. Full spatial and temporal coherence is obtained for EUV and soft X-rays. A fiber laser master oscillator and stabilized timing distribution scheme are proposed to synchronize accelerator rf systems and multiple lasers throughout the facility, allowing timing synchronization between sample excitation and X-ray probe of approximately 20-50 fs.
The National Ignition Facility (NIF) baseline configuration for inertial confinement fusion requires phase modulation for two purposes. First, approximately 12 angstrom of frequency modulation (FM) bandwidth at low modulation frequency is required to suppress buildup of Stimulated Brioullin scattering in the large aperture laser optics. Also, approximately 3 angstrom or more bandwidth at high modulation frequency is required for smoothing of the speckle pattern illuminating the target by the smoothing by spectral dispersion method. Ideally, imposition of bandwidth by pure phase modulation does not affect the beam intensity. Ideally, imposition of bandwidth by pure phase modulation does not affect the beam intensity. However, as a result of a large number of effects, the FM converts to amplitude modulation (AM). In general this adversely affects the laser performance, e.g. by reducing the margin against damage to the optics. In particular, very large conversion of FM to AM has been observed in the NIF all-fiber master oscillator and distribution systems. The various mechanisms leading to AM are analyzed and approaches to minimizing their effects are discussed.
We describe the Optical Pulse Generation (OPG) testbed, which is the integration of the MOD and Preamplifier Development Laboratories. We use this OPG testbed to develop and demonstrates the overall capabilities of the NIF laser system front end. We will present the measured energy and power output, temporal and spatial pulse shaping capability, FM bandwidth and dispersion for beam smoothing, and measurements of the pulse-to-pulse power variation o the OPG system and compare these results with the required system performance specifications. We will discus the models that are used to predict the system performance and how the OPG output requirements flowdown to the subordinate subsystems within the OPG system.
The work to improve the energy stability of the regenerative amplifier for the NIF is described. This includes a fast feed-forward system, designed to regulate the output energy of the regen by monitoring how quickly a pulse builds up over many round trips. Shot-to-shot energy fluctuations of all elements prior to the regen may be compensated for in this way, at the expense of a loss of approximately 50 percent. Also included is a detailed study into the alignment sensitivity of the regen cavity, with the goal of quantifying the effect of misalignment on the output energy. This is done by calculating the displacement of the eigenmode by augmenting the cavity ABCD matrix with the misalignment matrix elements, E, F. In this way, cavity misalignment issues due to thermal loading of the gain medium are investigated. Alternative cavity designs, which reduce the alignment sensitivity and therefore the energy drift over periods of continuous operation, are considered. Alterations to the amplifier head design are also considered.
We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high-speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz.
We are designing and developing a single mode fiber laser and modulation system for use in an inertial confinement fusion research laser, the National Ignition Facility (NIF). Our fiber and integrated optic oscillator/modulator system generates optical pulses of around 30 nanoseconds duration, at one kilohertz, with up to 500 nanojoules of energy. This is enough to potentially damage some of the single mode fiber and waveguide components. To test these components, we have built a test system using a diode-pumped Nd:YLF laser, producing 10 microjoules in 120 nanoseconds at 500 hertz. This system has been used to test commercial lithium niobate integrated optic modulators, silica-on-silicon waveguide splitters, lens-coupled dichroic mirror splitters, and other fiber optic components. We present results of damage tests and efforts to improve performance.
The proposed National Ignition Facility is a 192 beam Nd:glass laser system capable of driving targets to fusion ignition by the year 2005. A key factor in the flexibility and performance of the laser is a front-end system which provides a precisely formatted beam to each beamline. Each of the injected beams has individually controlled energy, temporal pulseshape, and spatial shape to accommodate beamline-to-beamline variations in gain and saturation. This flexibility also gives target designers the options for precisely controlling the drive to different areas of the target. The design of the front-end laser is described, and initial results are discussed.
KEYWORDS: Fermium, Frequency modulation, Speckle, Picosecond phenomena, Diagnostics, Frequency conversion, Laser systems engineering, National Ignition Facility, Speckle pattern, Crystals
A novel four-color beam smoothing scheme with a capability similar to that planned for the proposed National Ignition Facility has been deployed on the Nova laser, and has been successfully used for laser fusion experiments. Wavefront aberrations in high power laser systems produce nonuniformities in the energy distribution of the focal spot that can significantly degrade the coupling of energy into a fusion target, driving various plasma instabilities. The introduction of temporal and spatial incoherence over the face of the beam using techniques such as smoothing by spectral dispersion (SSD) can reduce these variations in the focal irradiance when averaged over a finite time interval. One of the limitations of beam smoothing techniques used to date with solid state laser systems has been the inability to efficiently frequency convert broadband pulses to the third harmonic (351 nm). To obtain high conversion efficiency, we developed a multiple frequency source that is spatially separated into four quadrants, each containing a different central frequency. Each quadrant is independently converted to the third harmonic in a four-segment Type I/Type II KDP crystal array with independent phase-matching for efficient frequency conversion. Up to 2.3 kJ of third harmonic light is generated in a 1 ns pulse, corresponding to up to 65% intrinsic conversion efficiency. SSD is implemented by adding limited frequency modulated bandwidth to each frequency component. This improves smoothing without significant impact on the frequency conversion process. The measured far field irradiance shows 25% rms intensity variation with four colors alone, and is calculated to reach this level within 3 ps. Smoothing by spectral dispersion is implemented during the spatial separation of the FM modulated beams to provide additional smoothing, reaching a 16% rms intensity variation level. Following activation the four-color system was successfully used to probe NIF-like plasmas, producing less than 1% SBS backscatter at greater than 2 multiplied by 1015 W/cm2. This paper discusses the detailed implementation and performance of the segmented four-color system on the Nova laser system.
In order to demonstrate new technology for the proposed National Ignition Facility (NIF), we are currently building a 5-kilojoule laser called Beamlet. The oscillator and pulse shaping system for Beamlet represents a major technological improvement over previous designs. Using integrated optics, fiber optics, and diode-pumped lasers instead of bulk optics and flashlamp-pumped lasers, this new master oscillator takes advantage of current technology to make a system with numerous advantages. The requirements for a NIF for greater flexibility and reliability necessitate this new approach; the pulse-forming system for the Beamlet demonstrates a subset of the capabilities required for a NIF. For the Beamlet, we must produce a single 1 - 10 ns, shaped- and frequency-modulated pulse. The Beamlet needs only to generate square output pulses for technology demonstration purposes, but the input pulses must be shaped to compensate for gain saturation in the power amplifier. To prevent stimulated Brillouin scattering (SBS) from damaging the output optics, the output pulse must have some bandwidth, and thus the pulse-forming system phase modulates the input pulse. These requirements are very similar to those for the Nova master oscillator system, but Nova technology is not the best choice for the Beamlet. In developing an oscillator design for a fusion laser system, the system requirements are defined by the oscillator's place in the overall laser architecture. Both Nova and Beamlet use a master oscillator-power amplifier (MOPA) architecture. In a MOPA-laser architecture, a low-power oscillator is followed by a high-gain, high-power amplifier. If the output signal is to have a high signal-to-noise ratio (SNR), the oscillator-signal power must be high above the amplifier noise power.
This paper describes the amplifier and beam shaping section of a new pulse generation system that will drive the Beamlet laser at LLNL. The master oscillator and pulse shaping system are described in an accompanying contribution [R. B. Wilcox ea., `Fusion Laser oscillator and pulse-forming system using integrated optics.', these proceedings]. A modified regenerative amplifier produces a gain of 109 to bring the oscillator pulses to the mJ- level. A serrated aperture and birefringent beam shaper produce a flat-topped square beam with high fill factor. A single four-passed Nd:glass rod amplifier provides sufficient gain to generate the desired 12 J output energy in a 3 nsec pulse with very small beam profile, wavefront and pulse shape distortion. We present a description of the system components, followed by a discussion of its performance, based upon over 150 full front end shots being completed since its assembly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.