A method is proposed to generate low emittance electron bunches from two color laser pulses in a laser-plasma accelerator. A two-region gas structure is used, containing a short region of a high-Z gas (e.g., krypton) for ionization injection, followed by a longer region of a low-Z gas for post-acceleration. A long-laser-wavelength (e.g., 5 μm) pump pulse excites plasma wake without triggering the inner-shell electron ionization of the high-Z gas due to low electric fields. A short-laser-wavelength (e.g., 0.4 μm) injection pulse, located at a trapping phase of the wake, ionizes the inner-shell electrons of the high-Z gas, resulting in ionization-induced trapping. Compared with a single-pulse ionization injection, this scheme offers an order of magnitude smaller residual transverse momentum of the electron bunch, which is a result of the smaller vector potential amplitude of the injection pulse.
The interaction of relativistically intense (Iλ2>>1.3 1018Wcm-2μm2) laser pulses with a near step-like plasma density
profile results in relativistic oscillations of the reflection point. This process results in efficient conversion of the incident
laser to a phase-locked high harmonic spectrum, which allows the generation of attosecond pulses and pulse trains.
Recent experimental results on efficiency scaling, highest harmonic generated and beam quality suggest that very high
focused intensities can be achieved opening up the possibility of ultra-intense attosecond X-ray interactions for the first
time.
The temporal characteristics of the harmonic emission from solid targets irradiated with intense laser pulses is
examined in detail. In the case where the CoherentWake Emission mechanism is dominant it is found that indeed
the harmonics thus produced possess a frequency chirp resulting in non Fourier-Transform-Limited pulses. A
simple model explains the underlying physics while Particle-In-Cell simulations support the conclusions drawn.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.