We study various non-Gaussian states generated by photon subtrastion from a squeezed light source. The source is a cw beam generated by optical parametric oscillator. The photon subtraction
is made by tapping a small fraction of the squeezed light source and by guiding it into two Si-APDs, which enable the subtraction of one to two photons. Trigger photon clicks specify a certain temporally
localized mode in the remaining squeezed beam. By filtering the remaining squeezed beam through an appropriate mode function, one can generate a variety of non-Gaussian states. This includes single and two photon states, the NOON state (N = 2), Schrödinger kitten states of both odd and even parities, and their arbitrarily desired superposition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.