Extreme ultraviolet (EUV) lithography faces major challenges for smaller nodes due to the impact of stochastic and processing failures.1 One of the main challenges for pitch shrink at these nodes is the optimization of the trade-off between break type defects versus bridge type defects as the process window between these defect modes gets smaller.2 In this paper, we examine EUV defect reduction techniques for Chemically Amplified Resist (CAR) and Metal Oxide Resist (MOR) via coater/developer process development combined with optimized etching processes.
Multi-patterning, like LE and SAMP, has been in production for several years. It is expected to remain a standard in patterning, even in the case where industry adopts EUV photo lithography. As scaling continues, the precision of pattern placement remains challenging.
Edge Placement Error (EPE) has been proposed to define the requirements of a patterning process. Many authors have created statistical models for EPE, and gathered statistical data for CD and overlay (OVL), to make predictions about future technology specifications1-5. This work makes the following contributions:
Emphasis on large amount (63K) of on-product measurements
Use of ANOVA table to assess the hypothesis that a contender process is better than a POR process To differentiate our work, we have used the stochastic variable IPFE (Interactive Pattern Fidelity Error), which is an indicator to quantify the quality of on-wafer edge placement accuracies in multi-patterning6. In our previous paper, we have studied how overlay, LCDU and pitch walk factor into the IPFE budget7. In this work, we focus on experimental verification of the expected relationships between LCDU, overlay and CD variation, applied to the case of SADP (block on spacer):
We re-confirm that population ‘blocks-on-gap’ have a worse IPFE performance than ‘block-on-core’
We determine experimental behavior of IPFE vs line CD, block CD, and overlay (w/o assumption for any model) From this exercise, we can conclude that this IPFE indicator is a robust metric for the managing quality of any integrated patterning scheme.
Extreme UV(EUV) technology must be potential solution for sustainable scaling, and its adoption in high volume manufacturing(HVM) is getting realistic more and more. This technology has a wide capability to mitigate various technical problem in Multi-patterning (LELELE) for via hole patterning with 193-i. It induced local pattern fidelity error such like CDU, CER, Pattern placement error. Exactly, EUV must be desirable scaling-driving tool, however, specific technical issue, named RLS (Resolution-LER-Sensitivity) triangle, obvious remaining issue. In this work, we examined hole patterning sensitizing (Lower dose approach) utilizing hole patterning restoration technique named “CD-Healing” as post-Litho. treatment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.