In this paper, flexible coplanar top-gate p-type SnO TFTs are demonstrated. The TFT performance was optimized by adjusting the post-deposition annealing temperature of the SnO channel. The on/off current ratio of the TFT first improves and then degrades as the channel annealing temperature increases. With an optimized annealing temperature of 175C, the flexible SnO TFT exhibits a field-effect mobility of 0.71 cm2/V-s, threshold voltage of 5.2 V, subthreshold swing of 1.6 V/decade, and on/off current ratio of 1.6 x 103. The gate-bias stress stability of the optimized TFT was then investigated. When the TFT is at flat state, the threshold voltage shifts after bias-stressed at +10 V and -10 V for 10000 s are 0.2 V and nearly 0 V, respectively. The electrical stability degrades slightly when the TFT is subjected to both mechanical tensile and compressive strains. At a compressive strain of 0.25%, the threshold voltage shifts increase to 0.8 V and -0.3 V for positive and negative bias stress, respectively. At a tensile strain of 0.25%, the corresponding values are 0.7 V and -0.2 V. Compared with unpassivated bottom-gate SnO TFTs, the gate-bias stress stability is greatly improved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.