Gallium phosphide (GaP) is an attractive material for non-linear optics because of its broad transparency window (λ_vac > 548 nm) and large Kerr coefficient (n_2 ~ 6 × 10^-18 m^2/W). Though well-established in the semiconductor industry as a substrate for visible LEDs, its use in integrated photonics remains limited due to fabrication challenges. Recently we have developed a method to integrate high quality, epitaxially-grown GaP onto silica (SiO2) based on direct wafer bonding to an oxidized silicon carrier wafer. Here we exploit this platform to realize unprecedentedly low loss (Q > 3 × 10^5) GaP-on-SiO2 waveguide resonators which have been dispersion-engineered to support Kerr frequency comb generation in the C-band. Single-mode, grating-coupled ring resonators with radii from 10 – 100 μm are investigated. The threshold for parametric conversion is observed at input powers as little as 10 mW, followed by 0.1 – 1 THz frequency comb generation over a range exceeding 400 nm, in addition to strong second- and third-harmonic generation. Building on this advance, we discuss the prospects for low-noise, sub-mW-threshold soliton frequency combs with center frequencies tunable from the mid-IR to the near-IR. Applications of such devices range from precision molecular spectroscopy to ultrafast pulse generation to massively parallel coherent optical communication.
Gallium phosphide is an attractive material for non-linear optics because of its broad transparency window (E_b = 2.26 eV) and large Kerr coefficient (n_2 = 6*10^-18 m^2/W). Though well-established in the semiconductor industry as a substrate for visible LEDs, its use for chip-scale photonics remains limited due to fabrication challenges. Here we demonstrate unprecedentedly low loss (Q > 10^5) GaP-on-SiO2 waveguide resonators which have been dispersion-engineered to support Kerr frequency comb generation in the C-band. Parametric threshold is observed with as little as 10 mW injected power, followed by 0.1 THz frequency comb generation over a bandwidth exceeding 30 THz, in addition to strong 2nd and 3rd harmonic generation. Building on this advance, we discuss the prospects for low-noise, sub-mW-threshold microresonator frequency combs with center frequencies tunable from mid-IR to the near-IR. Applications of such devices range from precision molecular spectroscopy to ultrafast pulse generation to massively parallel coherent optical communication.
We present the first investigation of optomechanics in an integrated one-dimensional gallium phosphide (GaP) photonic crystal cavity. The devices are fabricated with a newly developed process flow for integration of GaP devices on silicon dioxide (SiO2) involving direct wafer bonding of an epitaxial GaP/AlxGa1-xP/GaP heterostructure onto an oxidized silicon wafer. Device designs are transferred into the top GaP layer by inductively-coupled-plasma reactive ion etching and made freestanding by removal of the underlying SiO2. Finite-element simulations of the photonic crystal cavities predict optical quality factors greater than 106 at a design wavelength of 1550 nm and optomechanical coupling rates as high as 900 kHz for the mechanical breathing mode localized in the center of the photonic crystal cavity. The first fabricated devices exhibit optical quality factors as high as 6.5 × 104, and the mechanical breathing mode is found to have a vacuum coupling rate of 200 kHz at a frequency of 2.59 GHz. These results, combined with low two-photon absorption at telecommunication wavelengths and piezoelectric behavior, make GaP a promising material for the development of future nanophotonic devices in which optical and mechanical modes as well as high-frequency electrical signals interact.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.