Recently there has been considerable interest in the problems of optical imaging in turbid, strongly scattering media, such as tumours in biological tissues, objects in water, etc. To detect objects in the media the analysis of backscattering of picosecond signal can be used. In this paper we report about the influence of medium parameters and detector parameters on temporal profile of the reflected pulse and its intensity. Virtual experiments were carried out with the MONTE-CARLO method, and temporal profile of signal was obtained. The dependencies of the forepart and tail-part of the signal fronts, maximum position of the reflected signal and the reflection coefficient from the scattering particle density and cross section were obtained. These dependencies show that the tail-part of the signal is greatly decreased while the density is increased, compared to the forepart and maximum intensity position of the signal. These results can be used to analyze the scattering particle density and cross section in the turbid materials. Virtual experiments with the presence of various inhomogeneities were performed, which show that not only reflecting and absorbing solid objects, but also even density inhomogeneities can be detected.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.