We present the results of both theoretical and experimental investigations of materials for application either as a
reversible Contrast Enhancement Layer (rCEL) or a Two-Stage PAG. The purpose of these materials is to enable Litho-
Litho-Etch (LLE) patterning for Pitch Division (PD) at the 16nm logic node (2013 Manufacturing). For the rCEL, we
find from modeling using an E-M solver that such a material must posses a bleaching capability equivalent to a Dill A
parameter of greater than 100. This is at least a factor of ten greater than that achieved so far at 193nm by any usable
organic material we have tested.
In the case of the Two-Stage PAG, analytical and lithographic modeling yields a usable material process window, in
terms of reversibility and two-photon vs. one-photon acid production rates (branching ratio). One class of materials,
based on the cycloadduct of a tethered pair of anthracenes, has shown promise under testing at 193nm in acetonitrile.
Sufficient reversibility without acid production, enabled by near-UV exposure, has been achieved. Acid production as a
function of dose shows a clear quadratic component, consistent with a branching ratio greater than 1. The experimental
data also supports a acid contrast value of approximately 0.05 that could in principle be obtained with this molecule
under a pitch division double-exposure scenario.
The coupling characteristics of newly proposed hollow optical fiber (HOF) couplers are rigorously analyzed using the compact 2-D finite-difference time-domain (FDTD) method. The FDTD-simulated coupling efficiency as a function of the coupling length, and the transverse electric field distributions of the higher-order mode converted by the HOF couplers, are investigated. We propose that the designed HOF couplers can be used for various optical devices such as side-pumping double-clad fibers, mode splitters, and power monitors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.