We fabricate directly modulated membrane distributed-reflector lasers on a Si platform using a micro-transfer printing method. Single-mode lasing with a low threshold current of 1.2 mA and 50-Gbaud-class direct modulation are demonstrated.
Herein, we investigated the performance of a Si waveguide-integrated superconducting nanowire single-photon detector (SNSPD) with an arrayed waveguide grating (AWG) comprising SiN/SiON. The system detection efficiency of SNSPD with AWG was unchanged whether the AWG is at a room or cryogenic temperature because the insertion loss was unchanged while the passband shifts 1.7-nm lower at cryogenic temperature. On the other hand, the dark count rate of the SNSPD with AWG decreased by approximately 20 dB when the AWG was at cryogenic temperature. The AWG at the cryogenic temperature functioned as a cold optical bandpass filter, which suppressed the dark count rate due to the background room-temperature blackbody radiation through fiber optics. The noise equivalent power (NEP) of the SNSPD with AWG improved from 4.8 × 10-17 W/Hz-1/2 for the room-temperature AWG to 2.2 × 10-18 W/Hz-1/2 for the cryogenic-temperature AWG. Results demonstrated that the integration of photonic circuits with SNSPD at the cryogenic temperature benefited not only scalability but also performance.
Si photonics technology is promising for reducing the size and cost of optical transmitters because we can use mature Si-CMOS technologies to fabricate compact Si photonics devices on a large-scale Si wafer. For the optical transmitters, integration of lasers and silicon photonic devices is essential. Recently, heterogeneously integrated devices consisting of InP-based lasers and silicon Mach-Zehnder modulators (MZMs) have been developed, where the thickness of the Si waveguide in the laser gain section needs to be ~500 nm for index matching. On the other hand, silicon waveguide thickness between 200 and 300 nm is typically used in Si photonic devices; therefore, a Si thickness transition is necessary between the laser gain section and silicon MZMs. For changing the Si thickness, additional etching, deposition, or growth of Si layers is needed. However, these are not suitable solutions because device performance would be degraded by increasing the surface roughness and thickness variations of the Si waveguide.
In this work, we proposed a novel technique for integrating lasers and Si photonic devices without a Si thickness transition. We use a lateral current-injection membrane buried heterostructure (BH) as a laser gain section. This structure enables us to reduce the total thickness of the III-V region, resulting in the reduction of its effective refractive index. Therefore, the effective refractive index of the membrane BH laser can be matched to that of a 200-nm-thick Si waveguide, and the laser is suitable for integration with Si photonic devices.
High-capacity optical transmitters with reduced size, cost, and power consumption are required to meet growing bandwidth requirements of network systems. A high-modulation-efficiency Mach-Zehnder modulator (MZM) on an Si platform is a key piece of equipment for these transmitters. Si-MZMs have been widely reported; however their performance is limited by the material properties of Si. To overcome the performance limitations of Si MZMs, we have integrated III-V materials on Si substrate and developed a heterogeneously integrated III-V/Si metal oxide semiconductor (MOS) capacitor phase shifter for constructing ultra-high efficient MZM, in which the n-InGaAsP, p-Si, and SiO2 film are used for constructing the MOS capacitor. The fabricated MZM with the MOS capacitor exhibited a VπL of 0.09 Vcm and insertion loss of ~2 dB. 32-Gbps modulation of the MZM was also demonstrated.
A high-efficiency and low-loss Mach-Zehnder modulator on a Si platform is a key component for meeting the demand for high-capacity, low-cost and low-power optical transceivers in future optical fiber links. We report a III-V/Si MOS capacitor Mach-Zehnder modulator with an ultrahigh-efficiency phase shifter, which consists of n-type InGaAsP and ptype Si. The main advantage of this structure is a large electron-induced refractive index change and low free-carrier absorption loss of the n-type InGaAsP. The heterogeneously integrated InGaAsP/Si MOS capacitor structure is fabricated by using the oxygen plasma assisted bonding method. The fabricated device shows VπL of 0.09 Vcm, a value over three-times smaller than that of the conventional Si MOS capacitor Mach-Zehnder modulator, without an increase in the insertion loss. This clearly indicates that the proposed III-V/Si MOS capacitor Mach-Zehnder modulator overcomes the performance limit of the Si Mach-Zehnder modulator.
We developed a design technique for a photonics-electronics convergence system by using an equivalent circuit of optical devices in an electrical circuit simulator. We used the transfer matrix method to calculate the response of an optical device. This method used physical parameters and dimensions of optical devices as calculation parameters to design a device in the electrical circuit simulator. It also used an intermediate frequency to express the wavelength dependence of optical devices. By using both techniques, we simulated bit error rates and eye diagrams of optical and electrical integrated circuits and calculated influences of device structure change and wavelength shift penalty.
Silicon (Si) photonic wire waveguides provide a compact photonic platform on which passive, dynamic, and active photonic devices can be integrated. This paper describe the demonstrations of several kinds of integrated photonic circuits. The platform consists of Si wire, silicon-rich Si dioxide (SiOx) and Si oxinitride (SiON) waveguides for passive devices and a Si rib waveguide with a p-i-n structure and a germanium (Ge) device formed on Si slab for active devices. One of the key technologies for the photonic integration platform is low temperature fabrication because a back-end process with high temperature may damage active and electronic devices. To overcome this problem, we have developed electron cyclotron resonance chemical vapor deposition as a low-temperature deposition technique. Another key technology is polarization manipulation for reducing polarization dependence. A polarization diversity circuit is fabricated by applying Si wire and SiON integration. The polarization-dependent loss of the diversity circuit is less than 1 dB. Moreover we have developed several kinds of integrated circuit including passive, dynamic and active devices. Ge photodiodes are monolithically integrated with an SiOx-arrayed waveguide grating (AWG). We have confirmed that the operation speed of the integrated Ge photodiode is over 22 Gbps for all 16 channels. Variable optical attenuators (VOAs) fabricated on the Si p-i-n rib waveguides and an AWG based on the SiOx waveguide are integrated successfully. The total size of 16-ch-AWG-VOAs is 15 8 mm2. The device has already been made polarization independent. Furthermore electronic circuits are successfully mounted on the integrated photonic device by using flip-chip bonding.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.