A novel core dopant called diphenyl disulphide is used in PMMA-based fibers, permitting both increase of the refractive index of the fiber, together with good photosensitivity. FBGs can be inscribed in these single mode fibers within 7 ms using 325 nm laser and exhibit significant growth post-UV irradiation. In the present work, we investigate the grating growth behavior upon long UV irradiation time. Furthermore, we demonstrate the fabrication of fiber Bragg gratings with irradiation time ranging from 7 ms up to 10 s using a 325 nm laser and we investigate their growth post UV irradiation over 7 months. It is demonstrated that all the FBGs exhibit over 10 dB growth within the several month post-UV irradiation period. Raman spectroscopy measurements were carried out for several months on thin films post-UV irradiation, and significant changes in the molecular bounds of both diphenyl disulphide and PMMA are recorded, establishing the UV induced photo-chemical reaction responsible for the FBG growth. Finally, the reliability of the novel core dopant and the potential use of the fiber for in-vivo sensing was investigated by using humidity cycling at temperatures near the human body core temperature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.