We describe how a shape-measurement system (SMS) based on fringe projection can be combined with a two-dimensional digital image correlation (DIC) technique to accurately measure both surface profile and displacement fields at the same time. Whereas the measurement of all three displacement components by traditional DIC requires the use of at least two cameras, the approach presented here provides the full three-dimensional (3-D) displacement field from a single-camera, single-projector SMS with no additional hardware requirements. Furthermore, the single-pixel spatial resolution of the fringe projection technique can be exploited to prevent the correlation peak-splitting phenomenon that occurs when a DIC subimage straddles a global geometrical discontinuity. Thus, unlike traditional 3-D DIC techniques, the proposed method can measure displacement fields on discontinuous surfaces as easily as on smooth ones. Details of the algorithm are given together with experimental results of a rigid-body translation test. Measurements made during a routine fatigue test on a part of a wing panel are also presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.