We present a fully integrated photonic chip spectrometer for near-infrared tunable diode laser absorption spectroscopy of methane (CH4). The integrated photonic sensor incorporates a heterogeneously integrated III-V laser/detector chip coupled to a silicon external cavity for broadband tuning, and a long waveguide element (>20 cm) for ambient methane sensing. An on-chip sealed CH4 reference cell is utilized for in-situ wavelength calibration of the external cavity, and a real-time wavelength compensation method for laser calibration is described and demonstrated. The resulting signal is guided back to the III-V photodiodes for spectral signal readout using a custom-designed acquisition board, remotely controlled and operated by a Raspberry Pi unit. Component-level testing of the waveguide sensitivity, external cavity laser, and reference cell is demonstrated. Full-stack testing of the integrated sensor chip yields sub-100 ppmv∙Hz-1/2 sensitivity, and spectral density analysis demonstrates our integrated chip sensor to have a fundamental performance within an order of magnitude of commercially available fiber-pigtailed DFB laser units. We envision our integrated photonic chip sensors to provide disruptive capability in SWaP-C (size, weight, power, and cost) limited applications, and we describe an achievable short-term pathway towards sensitivity enhancement to near-10 ppmv levels.
We present a chip-scale spectroscopic methane sensor, incorporating a tunable laser, sensor waveguides, and methane reference cell, assembled as a compact silicon photonic integrated circuit. The sensor incorporates an InP-based semiconductor optical amplifier/photodetector array, flip-chip soldered onto a silicon photonic substrate using highprecision waveguide-to-waveguide interfaces. The InP chip provides gain for a hybrid external cavity laser operating at 1650 nm. The sensor features a 20-cm-long TM-mode evanescent-field waveguide as the sensing element and is compatible with high-volume wafer-scale silicon photonics manufacturing and assembly processes. This sensor can be an enabling platform for economical methane and more general distributed environmental trace-gas monitoring.
Single-mode integrated photonics assembly is challenging due to the tight alignment required for optical connections. To address this, we have developed a parallelized fiber assembly process using self-alignment of fiber arrays in V-grooves defined on the photonic chip. This approach is compatible with standard automated high-throughput pick and place tools, thus improving the scalability and cost-efficiency of photonic packaging. We describe our efforts toward increasing the assembly throughput as well as making the photonic connections compatible with high temperatures from downstream microelectronic assembly processes, such as lead-free solder reflows. The ability to survive these higher temperatures allows the pretesting of optical engines and paves the way for true co-integration of photonics and electronics. We have shown that attaching fibers to chips using multiple adhesives with partitioning of their function provides substantial gains in both throughput and reliability at a relatively small cost of dispense complexity. The fibers are tacked in place with lengthy adhesive cures performed in a batch process outside of the placement tool so as not to impact the placement tool’s throughput. This approach allows for strong long term structural integrity along with optimized optical index matching between the fiber and the waveguide coupler of the photonic dies. Not only did we observe the same peak optical performance that we previously reported, but we have also demonstrated no experimentally significant optical penalty after 5x lead-free solder reflows, in operational temperature between -15°C and 150°C and, after aggressive microelectronic environmental stressing going beyond the parameters traditionally used in optics. The ability to embed single mode optics in the first level package is a disruptive capability contributing to enable the high-density interconnects needed to meet the ever-increasing bandwidth demands for data communication. We discuss the benefits of such configurations, as well as the challenges for thermal management and system yields.
We present a portable optical spectrometer for fugitive emissions monitoring of methane (CH4). The sensor operation is based on tunable diode laser absorption spectroscopy (TDLAS), using a 5 cm open path design, and targets the 2ν3 R(4) CH4 transition at 6057.1 cm-1 (1651 nm) to avoid cross-talk with common interfering atmospheric constituents. Sensitivity analysis indicates a normalized precision of 2.0 ppmv·Hz-1/2, corresponding to a noise-equivalent absorbance (NEA) of 4.4×10-6 Hz-1/2 and minimum detectible absorption (MDA) coefficient of αmin = 8.8×10-7 cm-1·Hz-1/2. Our TDLAS sensor is deployed at the Methane Emissions Technology Evaluation Center (METEC) at Colorado State University (CSU) for initial demonstration of single-sensor based source localization and quantification of CH4 fugitive emissions. The TDLAS sensor is concurrently deployed with a customized chemi-resistive metal-oxide (MOX) sensor for accuracy benchmarking, demonstrating good visual correlation of the concentration time-series. Initial angle-ofarrival (AOA) results will be shown, and development towards source magnitude estimation will be described.
The packaging of photonic devices remains a hindering challenge to the deployment of integrated photonic modules. This is never as true as for silicon photonic modules where the cost efficiency and scalability of chip fabrication in microelectronic production facilities is far ahead of current photonic packaging technology. More often than not, photonic modules are still packaged today with legacy manual processes and high-precision active alignment. Automation of these manual processes can provide gains in yield and scalability. Thus, specialized automated equipment has been developed for photonic packaging, is now commercially available, and is providing an incremental improvement in cost and scalability. However, to bring the cost and scalability of photonic packaging on par with silicon chip fabrication, we feel a more disruptive approach is required. Hence, in recent years, we have developed photonic packaging in standard, highthroughput microelectronic packaging facilities. This approach relies on the concepts already responsible for the attractiveness of silicon photonic chip fabrication: (1) moving complexity from die-level packaging processes to waferlevel planar fabrication, and (2) leveraging the scale of existing microelectronic facilities for photonic fabrication. We have demonstrated such direction with peak coupling performance of 1.3 dB from standard cleaved fiber to chip and 1.1 dB from chip to chip.
The impact of integrated photonics on optical interconnects is currently muted by challenges in photonic packaging and in the dense integration of photonic modules with microelectronic components on printed circuit boards. Single mode optics requires tight alignment tolerance for optical coupling and maintaining this alignment in a cost-efficient package can be challenging during thermal excursions arising from downstream microelectronic assembly processes. In addition, the form factor of typical fiber connectors is incompatible with the dense module integration expected on printed circuit boards. We have implemented novel approaches to interfacing photonic chips to standard optical fibers. These leverage standard high throughput microelectronic assembly tooling and self-alignment techniques resulting in photonic packaging that is scalable in manufacturing volume and in the number of optical IOs per chip. In addition, using dense optical fiber connectors with space-efficient latching of fiber patch cables results in compact module size and efficient board integration, bringing the optics closer to the logic chip to alleviate bandwidth bottlenecks. This packaging direction is also well suited for embedding optics in multi-chip modules, including both photonic and microelectronic chips. We discuss the challenges and rewards in this type of configuration such as thermal management and signal integrity.
Silicon photonics is rapidly becoming the key enabler for meeting the future data speed and volume required by the Internet of Things. A stable manufacturing process is needed to deliver cost and yield expectations to the technology marketplace. We present the key challenges and technical results from both 200mm and 300mm facilities for a silicon photonics fabrication process which includes monolithic integration with CMOS. This includes waveguide patterning, optical proximity correction for photonic devices, silicon thickness uniformity and thick material patterning for passive fiber to waveguide alignment. The device and process metrics show that the transfer of the silicon photonics process from 200mm to 300mm will provide a stable high volume manufacturing platform for silicon photonics designs.
The LER and LWR of subtractively patterned Si and SiN waveguides was calculated after each step in the process. It was found for Si waveguides that adjusting the ratio of CF4:CHF3 during the hard mask open step produced reductions in LER of 26 and 43% from the initial lithography for isolated waveguides patterned with partial and full etches, respectively. However for final LER values of 3.0 and 2.5 nm on fully etched Si waveguides, the corresponding optical loss measurements were indistinguishable. For SiN waveguides, introduction of C4H9F to the conventional CF4/CHF3 measurement was able to reduce the mask height budget by a factor of 5, while reducing LER from the initial lithography by 26%.
Microphotonic devices employing strong confinement of light are of growing importance for key applications such as
telecommunication and optical interconnects. They have unique and desirable characteristics but their extreme
sensitivity to dimensional variations makes them difficult to successfully implement. Here, we discuss strategies towards
the successful realization of strong confinement devices. We leverage what planar fabrication technology does best:
replicating structures. Although the absolute dimensional control required for successful fabrication of many strong
confinement devices is all but impossible to achieve, we show that surprisingly-high relative dimensional accuracy can
be obtained on structures in proximity of one another on a wafer. This provides an advantage to schemes that are based
on multiple copies of low-complexity structures. These copies can be made nearly identical or with precise relative-dimensional
offsets to achieve the desired function. We quantify the achievable relative dimensional control and discuss
the first demonstration of multistage filters, integrated polarization diversity, and high-order microring-filter banks.
Photonic circuits based on silicon wire waveguides have attracted significant interest in recent years. They allow strong
confinement of light with moderately low propagation losses. Moreover, the high thermo-optical coefficient of silicon
and the small device size in silicon photonics allow for micro-heaters induced trimming, tuning, and switching with
relatively low power. In this paper, we review our recent progress towards telecom-grade reconfigurable optical add-drop
multiplexers (ROADMs) based on silicon microring resonators. We discuss waveguide and micro-heater design
and fabrication as well as the first demonstration of telecom-grade silicon-microring filters and the first demonstration of
transparent wavelength switching. The reported devices can be employed in numerous optical interconnect schemes.
Advances in femtosecond lasers and laser stabilization have led to the development of sources of ultrafast optical pulse
trains that show jitter on the level of a few femtoseconds over tens of milliseconds and over seconds if referenced to
atomic frequency standards. These low jitter sources can be used to perform opto-electronic analog to digital conversion
that overcomes the bottleneck set by electronic jitter when using purely electronic sampling circuits and techniques.
Electronic Photonic Integrated Circuits (EPICs) may enable in the near future to integrate such an opto-electronic
analog-to-digital converters (ADCs) completely. This presentation will give an overview of integrated optical devices
such as low jitter lasers, electro-optical modulators, Si-based filter banks, and high-speed Si-photodetectors that are
compatible with standard CMOS processing and which are necessary for the implementation of EPIC-chips for advanced
opto-electronic ADCs.
Progress in developing high speed ADC's occurs rather slowly - at a resolution increase of 1.8 bits per decade. This slow progress is mostly caused by the inherent jitter in electronic sampling - currently on the order of 250 femtoseconds in the most advanced CMOS circuitry. Advances in femtosecond lasers and laser stabilization have led to the development of sources of ultrafast optical pulse trains that show jitter on the level of a few femtoseconds over the time spans of typical sampling windows and can be made even smaller. The MIT-GHOST (GigaHertz High Resolution Optical Sampling Technology) Project funded under DARPA's Electronic Photonic Integrated Circuit (EPIC) Program is trying to harness the low noise properties of femtosecond laser sources to overcome the electronic bottleneck inherently present in pure electronic sampling systems. Within this program researchers from MIT Lincoln Laboratory and MIT Campus develop integrated optical components and optically enhanced electronic sampling circuits that enable the fabrication of an electronic-photonic A/D converter chip that surpasses currently available technology in speed and resolution and opens up a technology development roadmap for ADC's. This talk will give an overview on the planned activities within this program and the current status on some key devices such as wavelength-tunable filter banks, high-speed modulators, Ge photodetectors, miniature femtosecond-pulse lasers and advanced sampling techniques that are compatible with standard CMOS processing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.