Phase-measuring deflectometry (PMD) is an optical inspection technique for full-field topography measurements of reflective sample surfaces. The measurement principle relies on the analysis of specific patterns, reflected at the sample surface. Evaluation algorithms often model the respective pattern screen as a planar light source. However, the 3200 pattern screen in our inspection setup exhibits a central bulge of its surface of about 2–3mm. This paper presents a simulation framework for PMD to evaluate the effects of a deformed screen surface. The idea is to simulate image data acquired with screen surface deformations and to examine the effects on the PMD evaluation results. The simulated setup consists of a 3200 pattern screen with an adjustable central bulge height of 0–3mm and two cameras with a field of view (FOV) of approximately 225mm by 172mm on the sample surface. A first experiment examines the reconstruction errors for a planar sample surface if the reconstruction algorithm uses perfect calibration data (i.e. the same parameters used for the simulated image acquisition). The reconstructed surfaces exhibit a tilt with a maximum height difference of 174 μm across the FOV. A second experiment repeats the reconstruction process of the same sample surface, using camera parameters determined in a simulated calibration process. The resulting surfaces possess irregular, wave-like errors with amplitudes of up to 9 μm in the FOV. The presented simulation results reveal the accuracy limits if a deformation model of the pattern screen is not explicitly included in the reconstruction process.
Phase-measuring deflectometry is an optical inspection technique for reflective surfaces. It enables absolute, quantitative surface measurements, given a calibrated measurement setup. Two general calibration approaches can be found in literature: First, the stepwise approach uses a calibration pattern and determines internal camera parameters and external geometrical parameters in separate, consecutive steps. Second, the holistic approach optimizes all parameters collectively, based on deflectometric measurements of a calibration mirror. Whereas both approaches have been compared regarding the accuracy of subsequent surface measurements, the present contribution focuses on experimental examination of their reproducibility. In experiment E1, we assess the parameter variability by repeating both calibration procedures ten times. In an additional experiment E2, we repeat all calibration measurements related to a mirror/pattern position ten times in a row before rearranging the mirror/pattern, in order to examine the purely noise-related parameter variability. Finally, we calculate the coordinate variability of a set of world points projected onto the image planes of the calibrated cameras. The measured variability is consistently higher in E1 than in E2 (average ratio: 3.2). Unexpectedly, in both experiments, the external parameter variability also turns out to be higher for the holistic approach compared to stepwise calibration (average ratio: 2.3). This is of importance, since the holistic approach is known from literature to be more accurate than the stepwise approach, regarding their respective application to surface measurements. The image coordinate variability is comparable for both calibration approaches with an average of 0.84 and 0.21 camera pixels for E1 and E2, respectively.
Phase-measuring deflectometry is a technique for non-contact inspection of reflective surfaces. A camera setup captures the reflection of a sine-modulated fringe pattern shifted across a screen; the location-dependent measured phase effectively encodes the screen coordinates. As the used fringe patterns are much narrower than the screen dimension, the resulting phase maps are wrapped. The number-theoretical solution uses the Chinese remainder theorem to calculate an unwrapped phase map from repeated measurements with coprime fringe widths. The technique is highly susceptible to phase noise, i.e. small deviations of the measured phase values generally lead to unwrapped phase values with large errors. We propose a modification and show how non-coprime period widths make phase unwrapping robust against phase noise. Measurements with two non-coprime fringe period widths introduce the opportunity to discriminate between “legal” measured phase value pairs, that potentially originate from noise-free measurements, and “illegal” phase value pairs, that necessarily result from noise-affected measurements. Arranged as a matrix, the legal measurements lie on distinct diagonals. This insight not only allows to determine the legality of a measurement, but also to provide a correction by looking for the closest legal matrix entry. We present an experimental comparison of the resulting phase maps with reference phase maps. The presented results include descriptive statistics on the average rate of illegal phase measurements as well as on the deviation from the reference. The measured mean absolute deviation decreases from 1.99 pixels before correction to 0.21 pixels after correction, with a remaining maximum absolute deviation of 0.91 pixels.
We present the design of a varifocal freeform optics consisting of two lens bodies each with a helical-type surface structure of azimuthally varying curvatures. This arrangement allows for tuning the optical refraction power by means of a mutual rotation of the lens bodies around the optical axis. Thus, the refraction power can be tuned continuously in a defined range. The shape of the helical-type surfaces is formed by a change in curvature subject to the azimuthal angle α. At the transition of the azimuthal angle from α = 2π to α = 0, a surface discontinuity appears. Since this discontinuity will seriously affect the imaging quality, it has to be obscured. In the initial state, i.e., zero-degree rotation, the curvatures of the opposing surfaces result in a specific refraction power, which is constant over the entire circular aperture. Rotating one of the lens bodies by an angle φ around the optical axis will change the opposing curvatures and result in a change of refraction power. Two circular sectors with different tunable optical refraction powers are formed, thus resulting in a tunable bifocal optics. Obscuring the minor sector will result in a tunable monofocal rotation optics. In contrast to conventional tunable lens systems, where additional space for axial or lateral lens movement has to be allocated in design, rotation optics allowing for a more compact design. A performance analysis of the rotation optics based on simulations is presented in dependence on aperture size as well as approaches to compensate for spherical aberrations.
This paper presents the design of a novel varifocal freeform optics consisting of two lens bodies each with a helical-type surface structure of azimuthally varying curvatures. This arrangement allows for tuning the optical refraction power by means of a mutual rotation of the lens bodies around the optical axis. Thus, the refraction power can be tuned continuously in a defined range. The shape of the helical-type surfaces is formed by a change in curvature subject to the azimuthal angle α. At the transition of the azimuthal angle from α = 2π to α = 0, a surface discontinuity appears. Since this discontinuity will seriously affect the imaging quality, it has to be obscured. In the initial state, i.e. zero-degree rotation, the curvatures of the opposing surfaces result in a specific refraction power, which is constant over the entire circular aperture. Rotating one of the lens bodies by an angle φ around the optical axis will change the opposing curvatures and result in a change of refraction power. Two circular sectors with different tunable optical refraction powers are formed, thus resulting in a tunable bifocal optics. Obscuring the minor sector will result in a tunable monofocal rotation optics. In contrast to conventional tunable lens systems, where additional space for axial or lateral lens movement has to be allocated in design, rotation optics allowing for a more compact design. A simulative performance analysis of the rotation optics in dependence of the maximum rotation angle will be presented as well as an approach to design-for-manufacture.
The paper presents an approach to a cost-efficient modularly built non-dispersive optical IR-gas sensor (NDIR) based on a construction kit. The modularity of the approach offers several advantages: First of all it allows for an adaptation of the performance of the gas sensor to individual specifications by choosing the suitable modular components. The sensitivity of the sensor e.g. can be altered by selecting a source which emits a favorable wavelength spectrum with respect to the absorption spectrum of the gas to be measured or by tuning the measuring distance (ray path inside the medium to be measured). Furthermore the developed approach is very well suited to be used in teaching. Together with students a construction kit on basis of an optical free space system was developed and partly implemented to be further used as a teaching and training aid for bachelor and master students at our institute. The components of the construction kit are interchangeable and freely fixable on a base plate. The components are classified into five groups: sources, reflectors, detectors, gas feed, and analysis cell.
Source, detector, and the positions of the components are fundamental to experiment and test different configurations and beam paths. The reflectors are implemented by an aluminum coated adhesive foil, mounted onto a support structure fabricated by additive manufacturing. This approach allows derivation of the reflecting surface geometry from the optical design tool and generating the 3D-printing files by applying related design rules. The rapid fabrication process and the adjustment of the modules on the base plate allow rapid, almost LEGO®-like, experimental assessment of design ideas.
Subject of this paper is modeling, design, and optimization of the reflective optical components, as well as of the optical subsystem. The realization of a sample set-up used as a teaching aid and the optical measurement of the beam path in comparison to the simulation results are shown as well.
Optical freeform surfaces are gaining importance in different optical applications. A huge demand arises e.g. in the fields of automotive and medical engineering. Innovative systems often need high-quality and high-volume optics. Injectionmoulded polymer optics represents a cost-efficient solution. However, it has to be ensured that the tight requirements with respect to the system’s performance are met by the replicated freeform optics. To reach this goal, it is not sufficient to only characterise the manufactured optics by peak-to-valley or rms data describing a deviation from the nominal surface. Instead, optical performance of the manufactured freeform optics has to be analysed and compared with the performance of the nominal surface. This can be done by integrating the measured surface data of the manufactured freeform optics into the optical simulation model. The feedback of the measured surface data into the model allows for a simulation of the optical performance of the optical subsystem containing the real freeform optics manufactured. Hence, conclusions can be drawn as to whether the specifications with respect to e.g. imaging quality are met by the real manufactured optics. This approach will be presented using an Alvarez-Humphrey optics as an example of a tuneable optics of an ophthalmological application. The focus of this article will be on design for manufacturing the freeform optics, the integration of the measured surface data into the optical simulation model, simulation of the optical performance, and analysis in comparison to the nominal surface.
A large number of microgrippers has been developed in industry and academia. Although the importance of hybrid integration techniques and hence the demand for assembly tools grows continuously a large part of these developments has not yet been used in industrial production. The first grippers developed for microassembly were basically vacuum grippers and downscaled tweezers. Due to increasingly complex assembly tasks more and more functionality such as sensing or additional functions such as adhesive dispensing has been integrated into gripper systems over the last years. Most of these gripper systems are incompatible since there exists no standard interface to the assembly machine and no standard for the internal modules and interfaces. Thus these tools are not easily interchangeable between assembly machines and not easily adaptable to assembly tasks. In order to alleviate this situation a construction kit for modular microgrippers is being developed. It is composed of modules with well defined interfaces that can be combined to build task specific grippers. An abstract model of a microgripper is proposed as a tool to structure the development of the construction kit. The modular concept is illustrated with prototypes.
The microsystems field has seen only few standardization efforts so far. Si-based microtechnology profits from standardization in semiconductor technology mainly undertaken by SEMI. There is virtually no standardization neither for equipment nor for components in the Non-Si microtechnology. The main reason for this situation is the large variety of microcomponent shapes, sizes, materials, as well as manufacturing and assembly processes. While electronic assembly equipment is applicable for assembly as long as the microcomponents are chip-like such as pressure sensors, gas sensor arrays etc. the situation is different for hybrid microsystems, such as micro-optical and micro-fluidic systems. These systems are made up of microcomponents of different shapes and materials. This inherent variety has led to number of tailor made solutions, but to no real standardization of components or equipment so far. The German association of machine and plant manufacturers (VDMA) and the German standardization committee DIN NAFuO AA F3 have started standardization projects in the field of component and equipment standardization. These projects are supported by joint research projects.
Electrostatic forces are omnipresent in everyday life, sometimes a nuisance, such as hairs sticking to the comb, but also a valuable asset in a few technical processes, e.g. the Xerox copy process. Usage of electrostatic forces was so far confined to handling of nanoparticles or biological cells. This paper outlines the development of a device for feeding of Millimeter sized polymer parts by means of electrostatic forces. Starting from a brief assessment of the phenomena that generate electrostatic forces, rules for the design of an electrostatic conveyor are derived. A description of a first prototype is followed by a presentation of the results of the experiments. The paper terminates with a conclusion, that gives perspectives of future work.
Automatic assembly becomes an important issue as hybrid micro systems enter industrial fabrication. Moving from a laboratory scale production with manual assembly and bonding processes to automatic assembly requires a thorough re- evaluation of the design, the characteristics of the individual components and of the processes involved. Parts supply for automatic operation, sensitive and intelligent grippers adapted to size, surface and material properties of the microcomponents gain importance when the superior sensory and handling skills of a human are to be replaced by a machine. This holds in particular for the automatic assembly of micro-optical components. The paper outlines these issues exemplified at the automatic assembly of a micro-optical duplexer consisting of a micro-optical bench fabricated by the LIGA technique, two spherical lenses, a wavelength filter and an optical fiber. Spherical lenses, wavelength filter and optical fiber are supplied by third party vendors, which raises the question of parts supply for automatic assembly. The bonding processes for these components include press fit and adhesive bonding. The prototype assembly system with all relevant components e.g. handling system, parts supply, grippers and control is described. Results of first automatic assembly tests are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.