KEYWORDS: Sensors, Antennas, Crystals, Waveguides, Terahertz radiation, Optical sensors, Electric field sensors, Plasmas, Optical microsystems, Near field
The measurement of microwave electric-field (E-field) exposure is an ever-evolving subject that has recently led the International Commission on Non-Ionizing Radiation Protection to change its recommendations. With frequencies increasing toward terahertz (THz), stimulated by 5G deployment, the measurement specifications reveal ever more demanding challenges in terms of bandwidth (BW) and miniaturization. We propose a focus on minimally invasive E-field sensors, which are crucial for the in situ and near-field characterization of E-fields both in harsh environments such as plasmas and in the vicinity of emitters. We browse the large varieties of measurement devices, among which the electro-optic (EO) probes stand out for their potential of high BW up to THz, minimal invasiveness, and ability of vector measurements. We describe and compare the three main categories of EO sensors, from bulk systems to nanoprobes. First, we show how bulk-sensors have evolved toward attractive fibered systems that are advantageously employed in plasmas, resonance magnetic imagings chambers or for radiation-pattern imaging up to THz frequencies. Then we describe how the integration of waveguides helps to gain robustness, lateral resolution, and sensitivity. The third part is dedicated to the ultra-miniaturization of components allowing ultimate steps toward electromagnetic invisibility. This review aims at pointing out the recent evolutions over the past 10 years, with a highlight on the specificities of each photonic architecture. It also shows the way to future multi-physics and multi-arrays smart sensing platforms.
Isotropic sillenite crystals such as Bismuth Silicon Oxide (BSO) present highly interesting opto-electronics properties including electro-optic effect and photorefractivity. BSO is also a highly suitable candidate for sensitive temperature-independent electric field sensors [1]. Then the production of low cost BSO-based optical-waveguides is becoming a major challenge. However, BSO high density (> 7 g.cm3) and non-standard dimensions are a hurdle for standard fabrication approaches such as ion diffusion or exchange and standard clean-room technologies.
Here we report for the first time the successful fabrication of low loss BSO ridge waveguides with high index contrast. The proposed technique is based on optical-grade dicing [2], which allows low cost and massive production of photonic devices in different types of material. Ridge waveguides are made in a 15-µm thick chemical mechanical polished thin layer of BSO bonded on a lithium-niobate wafer. Propagation losses, group velocity and modal birefringence of optical modes have been measured by Optical-Coherence-Tomography. The waveguides support both TE and TM guided modes at telecom wavelength (1.55 µm) and present propagation losses lower than 2 dB/cm. This approach promises to be powerful for shaping single crystal thin films even in exotic formats. We expect low loss optical-waveguide in BSO will pave the way toward compact and highly sensitive electric-field sensors, scintillators, LED and laser applications.
[1] I. Saniour et al, NMR in Biomedicine,31, (2018).
[2] N. Courjal et al, Journal of Physics D: Applied Physics, 305101,(2011).
Lithium niobate (LiN bO3) microresonators have attracted much interest over the last decade, due to the electrooptical, acousto-optic and non-linear properties of the material, that can advantageously be employed in combination with thin resonances of optical microcavities for applications as varied as integrated gyrometers, spectrometers or dynamic filters. However the integration of micrometer scale cavities with an input/output waveguide is still a critical issue. Here we propose an innovative approach, allowing low insertion losses and easy pigtailing with SMF fibers. The approach consists in producing and optimizing separately a membrane-based LiNbO3 waveguide with Spot-Size Converters, and a thin microdisk. The two elements are dynamically assembled and fixed in a second step. Additionally to the proposed integrated microresonator, this approach opens the way to the production of 3D hybrid photonic systems.
Biomedical engineering (BME), electrophysiology, Electromagnetic Compatibility (EMC) or aerospace and defense fields demand compact electric field sensors with very small spatial resolution, low sensitivity and large bandwidth. We show that the electro-optical property of lithium niobate coupled with the tunability of photonic crystals can answer this request through Lab-on-Fiber technology.
First, band diagram calculations and Finite Difference Time Domain (FDTD) simulations analysis lead to the design of the most suitable two-dimensional photonic crystal geometry. We show that light normal incidence on rectangular array of air holes in free standing X-cut thin film lithium niobate produces a very sharp and E-field sensitive Fano resonance at a wavelength of 1550nm. Then, in order to concentrate the E-Field to be detected in the photonic crystal area (20μm*20μm*0.7μm) we design a thin metallic antenna, scaled down them in such a way that it does not produce any disturbances while increasing the sensitivity.
The LN membrane with the antenna is fabricated by standard clean room processes and Focused Ion Beam (FIB) is used to mill the photonic crystal. Then, by means of a flexible/bendable transparent membrane, we were able to align and to attach the photonic crystal onto a ferrule ending polarization maintained optical fiber.
Optical characterizations show that the Fano resonance is easily modulated (wavelength shifted) by the surrounding E-field. The novel non-intrusive E-field sensor shows linearity, low sensitivity, large bandwidth (up to 100GHz) and a very small spatial resolution (≈20μm). To the best of our knowledge, this spatial resolution has never been achieved in E-field optical sensing before.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.