Tunable and low-power microcavities play a vital role in facilitating the development of large-scale photonic integrated circuits. Among various tuning methods, thermal tuning has gained significant popularity due to its convenience and stability, especially in the fields of optical neural networks and quantum information processing. In recent years, graphene thermal tuning has emerged as a promising technique, offering both tunability and power efficiency by eliminating the need for thick spacers to prevent light absorption. In this study, we propose and fabricate a silicon-based on-chip Fano resonator with graphene nano-heaters. This innovative Fano structure incorporates a scattering block and can be easily manufactured in large quantities. Experimental results demonstrate that the resonator exhibits desirable characteristics, including a high quality factor of approximately 31000 and a low state-switching power consumption of around 1 mW. The temporal responses of the microcavity exhibit satisfactory modulation speed, with a rise time of 9.8 μs and a fall time of 16.6 μs. The findings of this research offer an alternative solution for the future development of large-scale tunable and low-power-consumption optical networks, with potential applications in optical filters and switches.
As a typical two-dimensional material, ever since the first exfoliation of graphene in 2004, many studies have been carried out around its unique mechanical, optical and electrical properties. Due to its unique lattice structure, it exhibits extremely high carrier mobility and excellent thermal conductivity, showing high stability at high temperatures. This makes graphene a promising material for thermal applications. In the past few years, Joule heating of micro scale graphene for thermal infrared emission and broadband light sources has attracted significant attentions. However, the potential of large area and array of graphene in thermal infrared applications has rarely been explored. Here we experimentally demonstrate infrared display with centimeter scale graphene film array.
In the past two decades, the development of nanophotonics, particularly photonic crystals, plasmonics, metamaterials and 2D material photonics, has led to the demonstration of many new and exotic optical phenomena that greatly changed our understanding of optics and electromagnetics. Bringing such cutting-edge knowledge to optical courses for undergraduate and postgraduate students can not only help the students better understand the fundamental principles of optics but also significantly increase their study interests. We have done this in the past several years and here we show some examples ranging from metamaterials to the optical responses of graphene.
This article analyzes the features of fostering optoelectronic students’ innovative practical ability based on the knowledge structure of optoelectronic disciplines, which not only reveals the common law of cultivating students' innovative practical ability, but also considers the characteristics of the major: (1) The basic theory is difficult, and the close combination of science and technology is obvious; (2)With the integration of optics, mechanics, electronics and computer, the system technology is comprehensive; (3) It has both leading-edge theory and practical applications, so the benefit of cultivating optoelectronic students is high ; (4) The equipment is precise and the practice is costly. Considering the concept and structural characteristics of innovative and practical ability, and adhering to the idea of running practice through the whole process, we put forward the construction of three-dimensional innovation and practice platform which consists of “Synthetically Teaching Laboratory + Innovation Practice Base + Scientific Research Laboratory + Major Practice Base + Joint Teaching and Training Base”, and meanwhile build a whole-process progressive training mode to foster optoelectronic students’ innovative practical ability, following the process of “basic experimental skills training - professional experimental skills training - system design - innovative practice - scientific research project training - expanded training - graduation project”: (1) To create an in - class practical ability cultivation environment that has distinctive characteristics of the major, with the teaching laboratory as the basic platform; (2) To create an extra-curricular innovation practice activities cultivation environment that is closely linked to the practical application, with the innovation practice base as a platform for improvement; (3) To create an innovation practice training cultivation environment that leads the development of cutting-edge, with the scientific research laboratory as a platform to explore; (4) To create an out-campus expanded training environment of optoelectronic major practice and optoelectronic system teaching and training, with the major practice base as an expansion of the platform; (5) To break students’ “pre-job training barriers” between school and work, with graduation design as the comprehensive training and testing link.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.