The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (μ-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 μm wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a ~10 cm2 silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for μ-Spec is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. Two point designs with resolving power of 260 and 520 and an RMS phase error less than ~0:004 radians were developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.
We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared
astronomy. Each detector array is comprised of λ/2 stepped impedance resonators, a 1.5μm thick silicon
membrane, and 380μm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled
to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This
allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array.
The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and
filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high
fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the
microstrip circuit.
X-ray microcalorimeters using magnetic sensors show great promise for use in astronomical x-ray spectroscopy.
We have begun to develop technology for fabricating arrays of magnetic calorimeters for X-ray astronomy. The
magnetization change in each pixel of the paramagnetic sensor material due to the heat input of an absorbed
x-ray is sensed by a meander shaped coil. With this geometry it is possible to obtain excellent energy sensitivity,
low magnetic cross-talk and large format arrays fabricated on wafers that are separate from the SQUID read-out.
We report on the results from our prototype arrays, which are coupled to low noise 2-stage SQUIDs developed
at the PTB Berlin. The first testing results are presented and the sensitivity compared with calculations.
PAPPA is a balloon-based experiment designed to measure the polarization of the Cosmic Microwave Background using candidate technology for an eventual Einstein Inflation Probe mission. It will survey a 20° × 20° patch of sky with 0.5° angular resolution covering 3 passbands centered at 89, 212 and 302 GHz. Detection will be accomplished via antenna-coupled transition edge sensors (TESs) with SQUID-based readouts. In the eventual flight package, band defining filters and MEMS-based polarization modulators will be incorporated into the superconducting microstrip transmission lines that terminate in resistors that are thermally coupled to the TESs. The MEMS switches will allow on-chip polarization modulation that is faster than significant detector gain variations. The initial configuration will incorporate a simplified focal plane augmented by quasioptical polarization modulation. We describe the overall instrument design and present a summary of the current progress.
A miniature Fabry-Perot tunable infrared filter under development at the NASA Goddard Space Flight Center is fabricated using micro opto electromechanical systems (MOEMS) technology. Intended for wide-field imaging spectroscopy in space flight, it features a large 10-mm diameter aperture structure that consists of a set of opposing
suspended thin films 500 nanometers in thickness, supported by annular silicon disks. Achieving the desired effective finesse in the MOEMS instrument requires maximizing the RMS flatness in the film. This paper presents surface characterization data for the suspended aperture film prior to, and following application of a multi-layer dielectric mirror. A maximum RMS flatness of 38 nanometers was measured prior to coating, leading to an estimate of the maximum
effective finesse of 14. Results show evidence of initial deformation of the silicon support structure due to internal stress in the substrate and thin film layers. Film stress gradients in the dielectric coating on either side of the aperture add convexity and other localized deflections. The design of a tuning system based upon electrostatic positioning with feedback control is presented.
We are developing a new type of detector for observational cosmology and astrophysical research. Incoming radiation from the sky is coupled to a superconducting microstrip transmission line that terminates in a thin film absorber. At sub-Kelvin temperature, the thermal isolation between the electrons and the lattice makes it possible for the electrons in the small absorber (100's of cubic micro-meter) and superconducting bilayer (Transition Edge Sensor) to heat up by the radiation absorbed by the electrons of the normal absorbing layer. We call this detector a Transition-edge Hot-electron Micro-bolometer (THM). THMs can be fabricated by photo lithography, so it is relatively easy to make matched detectors for a large focal plane array telescope. We report on the thermal properties of Mo/Au THMs with Bi/Au absorbers.
We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications. We report measurements of device I-V characteristics and terahertz surface impedance.
We have investigated the noise performance of MoAu-bilayer TES bolometers designed for infrared detectors. A set of devices with variations in geometry were fabricated at the NASA/GSFC detector development facility. These detectors have different bilayer aspect ratios and have varieties of normal metal regions deposited on top of the bilayer to study the effects of geometry on noise. These normal metal regions are oriented either parallel or transverse to the direction of current flow, or both. The lowest noise detectors are found to have normal metal regions oriented transversely. Our detectors with the most favorable design feature negligible excess noise in the in-band region, only slight excess noise in the out-of-band region, and low 1/f noise. The detectors are successfully used in the Submillimeter Broadband Spectrometer FIBRE which is used for astronomical observations at the Caltech Submillimeter Observatory.
We are developing superconducting direct detectors for submillimeter astronomy that can in principle detect individual photons. These devices, Single Quasiparticle Photon Counter (SQPC), operate by measuring the quasiparticles generated when single Cooper-pairs are broken by absorption of a submillimeter photon. This photoconductive type of device could yield high quantum efficiency, large responsivity, microsecond response times, and sensitivities in the range of 10-20 Watts per root Hertz. The use of antenna coupling to a small absorber also suggests the potential for novel instrument designs and scalability to imaging or spectroscopic arrays. We will describe the device concept, recent results on fabrication and electrical characterization of these detectors, issues related to saturation and optimization of the device parameters. Finally, we have developed practical readout amplifiers for these high-impedance cryogenic detectors based on the Radio-Frequency Single-Electron Transistor (RF-SET). We will describe results of a demonstration of a transimpedance amplifier based on closed-loop operation of an RF-SET, and a demonstration of a wavelength-division multiplexing scheme for the RF-SET. These developments will be a key ingredient in scaling to large arrays of high-sensitivity detectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.