Nanostructured black silicon (bSi) exhibits a broadband antireflection (AR) response due to graded-index and scattering effects, unlike traditional quarter-wavelength dielectric AR coatings. We present various techniques to improve the front- and back-surface performance of nanostructured bSi solar cells. Ammonium dihydrogen phosphate (ADP) is used for proximity doping to reduce the physical impact on the bSi nanostructures during front-surface emitter formation. An optimum concentration of 2 wt. % of ADP is found to result in a typical solar cell emitter sheet resistivity of 50 Ω / sq. Potassium hydroxide is used to etch off the highly doped region of the bSi solar cell front emitter, which results in lower surface recombination and up to a 23% increase in short wavelength (400 to 600 nm) internal quantum efficiency of the bSi solar cell. To reduce the series resistance and enhance surface passivation, forming gas anneal is employed, improving bSi cell’s overall efficiency by over 31%. By optimizing the back-surface-field formed by sputtered aluminum (Al), the backside recombination rate is reduced, improving external quantum efficiency by up to 11% in the long wavelength (>900 nm) region.
In this work we characterize the thermal conductivity properties of nanoprous ‘black silicon’ (bSi). We fabricate the nanoporous bSi using the metal assisted chemical etching (MACE) process utilizing silver (Ag) metal as the etch catalyst. The MACE process steps include (i) electroless deposition of Ag nanoparticles on the Si surface using silver nitrate (AgNO3) and hydrofluoric acid (HF), and (ii) a wet etch in a solution of HF and hydrogen peroxide (H2O2). The resulting porosity of bSi is dependent on the ratio of the concentration of HF to (HF + H2O2); the ratio is denoted as rho (ρ). We find that as etch time of bSi increases the thermal conductivity of Si increases as well. We also analyze the absorption of the bSi samples by measuring the transmission and reflection using IR spectroscopy. This study enables improved understanding of nanoporous bSi surfaces and how they affect the solar cell performance due to the porous structures’ thermal properties.
In this work, we utilize electrochemical impedance spectroscopy (EIS) to study the electronic characteristics of nanostructured silicon (Si) fabricated using the metal-assisted chemical etched (MACE) process. The nanostructured Si fabricated using the MACE process results in a density graded surface that reduces the broadband surface reflection of Si making it appear almost black, which coins it the name ‘black Si’ (bSi). We study two bSi samples prepared using varying MACE times (20s and 40s) and a reference bare silicon sample using EIS between 1 MHz and 1 Hz frequencies. At an illumination intensity created with the use of a tungsten lamp source calibrated to output an intensity of 1-Sun (1000 W/m2), the impedance behavior at bias potentials in both the forward and reverse bias ranging between -1 V and 1 V are studied. We also study the effect of illumination wavelength by using bandpass filters at 400 nm and 800 nm. The results indicate that the charge transfer resistance (Rct) decreases as the surface roughness of the electrodes increases and as the illumination wavelength increases. We also find that the constant phase element (CPE) impedance of the electrodes increases with increasing surface roughness. These results will guide our future work on high efficiency bSi solar cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.