Cerenkov luminescence tomography (CLT) is a highly sensitive and promising imaging modality for three-dimensional visualization of radiopharmaceuticals. However, the approximate error generated by the simplified radiation transfer equation and the ill-posedness of the inverse problem limit the improvement of CLT reconstruction. In this research, a residual learning network (RLN) was proposed to improve morphological restorability. By learning the relationship between surface photon intensity and internal source, the errors from the inverse process could be avoided. RLN comprised two fully connected sub-networks: one was used to provide the coarse reconstruction result. The other optimized the final reconstruction result by learning the residual between the coarse reconstruction result and the true source. Monte Carlo method was used to generate the dataset. Furthermore, multilayer fully connected neural network (MFCNN) was used as baselines and compared. Single-source simulation and robustness experiments were conducted to evaluate the reconstruction performance. The experimental results show RLN achieved accurate localization and morphological reconstruction, which will promote the application of machine learning in optical tomography reconstruction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.