With the aim to satisfy the scalable growth in both network traffic volume and connected endpoints while decreasing the cost and the energy consumption, transparent optical DC networks (DCNs) based on fast optical switches have been considered, featuring the data rate and format transparency and eliminating the power consuming O/E/O conversions. In this work, we propose and experimentally assess novel optical DCN architectures based on distributed and buffer-less nanoseconds WDM photonics integrated switches. The WDM photonic integrated switches are capable to switching in the wavelength, space, and nanoseconds time domain to provide full flexibility and the required speed to achieve high throughput DCN networks. Disaggregated DCN architectures enabled by the fast WDM PIC switch will be also presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.