The Kyoto Tridimensional Spectrograph II (Kyoto 3DII) is an optical integral field spectrograph mounted on the Subaru telescope as a PI-type instrument. Used with AO188, Kyoto 3DII provides us unique opportunities of optical Integral Field Spectroscopy (IFS) with adaptive optics (AO). While AO works better in redder wavelength regions, quantum efficiency of the previous CCD was low there with optimization for a wider wavelength coverage. To optimize Kyoto 3DII to AO observations, we have newly installed the red-sensitive Hamamatsu fully depleted CCD, which enhances the system efficiency by a factor of ~2 in the red wavelength range. Fringes are dramatically reduced, and the readout noise drops to 3:2-3:4e- about two times smaller than previous, due to refrigerator and readout system. With these improvements, we carried out engineering and scientific observations in September 2015, February and March 2016. We measured the system efficiency using a standard star, and confirmed the successful improvement of the system efficiency. We observed galactic nuclei of nearby galaxies in the Natural Guide Star (NGS) and the Laser Guide Star (LGS) modes. We found the spatial resolution of ~0.1′′ FWHM using a 9.5-magnitude NGS, and ~0.2 - 0:4′′ in LGS mode. Together with the AO resolution, improved efficiency opens a new window for Kyoto 3DII to carry out high resolution optical IFS targeting faint objects such as high-redshift galaxies as well as faint lines such as [OI] λ6300° A and absorption lines of nearby objects.
In 2014 and 2015 the Multi-Object InfraRed Camera and Spectrograph (MOIRCS) instrument at the Subaru Telescope on Maunakea is underwent a significant modernization and upgrade project. We upgraded the two Hawaii2 detectors to Hawaii2-RG models, modernized the cryogenic temperature control system, and rewrote much of the instrument control software. The detector upgrade replaced the Hawaii2 detectors which use the Tohoku University Focal Plane Array Controller (TUFPAC) electronics with Hawaii2-RG detectors using SIDECAR ASIC (a fully integrated FPA controller system-on-a-chip) and a SAM interface card. We achieved an improvement in read noise by a factor of about 2 with this detector and electronics upgrade. The cryogenic temperature control upgrade focused on modernizing the components and making the procedures for warm up and cool down of the instrument safer. We have moved PID control loops out of the instrument control software and into Lakeshore model 336 cryogenic temperature controllers and have added interlocks on the warming systems to prevent overheating of the instrument. Much of the instrument control software has also been re-written. This was necessitated by the different interface to the detector electronics (ASIC and SAM vs. TUFPAC) and by the desire to modernize the interface to the telescope control software which has been updated to Subaru's "Gen2" system since the time of MOIRCS construction and first light. The new software is also designed to increase reliability of operation of the instrument, decrease overheads, and be easier for night time operators and support astronomers to use.
During the past year, the Multi-Object InfraRed Camera and Spectrograph at Subaru has undergone an upgrade of its science detectors, the housekeeping electronics and the instrument control software. This overhaul aims at increasing MOIRCS' sensitivity, observing efficiency and stability. Here we present the installation and the alignment procedure of the two Hawaii 2RG detectors and the design of a cryogenic focus mechanism. The new detectors show significantly lower read noise, increased quantum efficiency, and lower the readout time.
LISS (Line Imager and Slit Spectrograph) is an imager and spectrograph equipped with a liquid crystal etalon and a low resolution grism. It is specialized to observe and map the emission and absorption lines of astronomical objects. A fully depleted and back illuminated 2K x 1K Hamamatsu CCD which has high sensitivity at redder wavelengths in optical bands enables this instrument to give a good performance in imaging and spectroscopic observations of emission lines such as [SIII]λλ 906.9/953.2 nm. We successfully carried out commissioning observations at the 1.6-m Pirka telescope of Hokkaido University in September/October 2012 and June/July 2013. In this paper, we describe the design and performance of LISS as well as its early observational results and future prospects.
We developed a new readout system for the near-infrared detector VIRGO-2K (2kx2k HgCdTe array) installed in the optical-infrared simultaneous camera, HONIR, for the 1.5 m Kanata telescope at Higashi-Hiroshima observatory. The main goal of this development is to read out one frame within ~ 1 second through 16 output readout mode of the detector, in order to reduce the overhead time per exposure. The system is based on a CCD controller, Kiso Array Controller (KAC). We redesigned the analog part of KAC to fit VIRGO-2K. We employed a fully differential input circuit and a third order Bessel low-pass filter for noise reduction and a constant current system to improve the linearity of the detector. We set the cutoff frequency of the Bessel low-pass filter at the readout clock rate (120 kHz). We also set the constant current at 200 μA according to the data sheet of VIRGO-2K. We tested the new readout system at room temperature and confirmed that the low-pass filter works well as designed. The fluctuation of the current level of the constant current system is less than 2% for the typical output voltage range of VIRGO-2K (3.2-4.4 V). We measured the readout noise caused by the new readout system (connected to cooled multiplexer) and found that it is 30-40 μV rms, being comparable to or slightly higher than the typical readout noise of VIRGO-2K, ∼ 37 μV rms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.